版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p> An automated digging control for a wheel loader</p><p><b> Summary</b></p><p> An Automated Digging Control System (ADCS) for a wheel loader is developed that utilizes a
2、 behavior-based control structure combined with fuzzy logic. This controller exhibits the real-time reactive responses necessary for executing digging tasks in an uncertain, unstructured and dynamic excavation environmen
3、t. This paper presents field test results of a prototype ADCS that was developed and implemented on a Caterpillar 980G wheel loader. Test results show that the performance of the automated s</p><p> Key Wor
4、ds: Fuzzy behavior control; Automated digging; Robotic excavation</p><p> Introduction</p><p> Automating the dig component of the excavation cycle on earth moving machines such as wheel loade
5、rs, hydraulic shovels and mass-excavators, and cable shovels, has many potential benefits. Typically, when these machines are used in mining or construction applications they load large quantities of material (soil, rock
6、, etc.) into a fleet of circulating trucks. Here, digging difficulty can vary dramatically and in these difficult digging situations effective loading performance is only achieved by </p><p> The use of an
7、effective automated digging control system would give every machine operator the capabilities of an expert operator, and generate the following benefits. First, consistent operation over the duration of the shift, since
8、the control system does not get tired or lose concentration. Second, improve machine availability because the controller will always operate the machine within design limits during digging. Third, reduced wheel slippage
9、during digging. However, to achieve these bene</p><p> The sensors and actuators used should be limited to those currently available on a modern loading machine. For a wheel loader this includes electro-hyd
10、raulic actuation of bucket motions, bucket position sensors and measurement of a limited number of drive train parameters. Complex sensing and actuation systems may be prone to failure in the harsh environment. Next, the
11、 system should require no input from the operator related to characterizing digging difficulty. This would require operators to m</p><p> Automatic digging control of loading machines is particularly diffic
12、ult because they operate in dynamic and unstructured environments where conditions are unknown, extremely variable and difficult to detect. On the other hand, expert human operators can achieve sophisticated control of l
13、oading machines in these difficult environments. Repeated excavation experiences help the operator to learn machine operational skills and how to adapt their operating modes to the dynamic conditions. The complex</p&g
14、t;<p> Several years ago, the University of Arizona researchers started a project funded by Caterpillar Inc. to use CARE as the basis to develop, implement and test an Automated Digging Control System (ADCS) on a
15、 wheel loader. The implementation platform for the prototype ADCS was a Caterpillar 980G wheel loader (see Figure 1). This wheel loader weighs 29,497 kg, is 9.5 m long, 3.75 m high and has a 4.7 m³bucket. The criter
16、ia listed above were used for the designing ADCS.</p><p> Fig. 1. The Caterpillar 980G Wheel Loader Test Platform</p><p> In this paper, we show how the CARE approach has been used to develop
17、the prototype Automated Digging Control System on the Caterpillar 980G. The ADCS utilizes only existing production sensors and actuators and has only modest computational needs. The first half of the paper details the co
18、ntrol structure of the ADCS, while the remaining sections present data from field tests. These show that the performance of the automated system is comparable to that of an expert human operator over a wide ran</p>
19、<p> Overview of related automated digging control work</p><p> The many potential applications for automated earth moving systems has attracted a significant amount of research in this area. Typica
20、lly, research has fallen into two major areas: digging process modeling and planning, and automated digging. A comprehensive summary of the current research in the field is given in Singh. This section concentrates on wo
21、rk related to the automated digging direction.</p><p> In general, the simple trajectory planning and control approach is not effective, therefore several researchers measure forces during digging which are
22、 used to adjust the digging trajectory. Bullock and Huang use these forces to initiate digging trajectory actions when fixed force thresh-olds are met. These techniques are not effective and often do not fill the bucket
23、in a wide variety of excavation situations. Alternatively, other researchers have selected digging con-trol actions using a set o</p><p> A fuzzy logic controller has been developed by Sameshima et al . whi
24、ch controls the actuation of each degree of freedom relative to bucket motion during the digging process. Thus the fuzzy rules are evaluated at each control cycle and joint velocity commands are the weighted output of th
25、e rules. The Autodig approach used by Rocke uses the actual forces from hydraulic cylinder measurements. These forces are then related to forces inferred from bucket velocities. Commands for each degree of freedo</p&g
26、t;<p> Autodig algorithm for dig execution in their Autonomous Loading System (ALS) which completely automates the task of loading trucks with a mass excavator.</p><p> Another Autodig approach by S
27、hull also uses actual forces measured from the hydraulic cylinders. These forces are used to determine a force vector passing through a point on the bucket that represents the resultant material forces resisting bucket m
28、otion. A target angle is also generated on the basis of accumulated energy and then bucket motion commands are generated in response to differences in the target angle and the force vector. This approach can cause the bu
29、cket to stall when high resisti</p><p> A position-based impedance control approach for operator assistance during digging with a teleoperated mini-excavator was developed by Salcudean et al . at the Univer
30、sity of British Columbia. The system follows an operator specified digging path until material resistance impedes its progress, then the impedance controller tries to follow the path as closely as possible. Alternatively
31、, Bernold proposes an impedance controller where an optimal trajectory for the bucket is generated using a plannin</p><p> Singh proposes using a trajectory planner that uses a pure position based control s
32、ystem during the digging process. A prediction of forces that will be encountered during digging is used to reject trajectories that exceed the limitations of the hydraulic actuators. Predicting forces in soil with unkno
33、wn inclusions or in blasted rock is extremely difficult if not impossible.</p><p> 輪式挖掘裝載機(jī)自動(dòng)控制</p><p><b> 摘要</b></p><p> 為輪式裝載機(jī)開發(fā)的自動(dòng)挖掘控制系統(tǒng),采用了基于行為的模糊邏輯控制結(jié)構(gòu)。在非結(jié)構(gòu)化和動(dòng)態(tài)開挖
34、環(huán)境下執(zhí)行一個(gè)不確定的挖掘任務(wù)時(shí),該控制器能夠?qū)崟r(shí)響應(yīng)。本文將一個(gè)ADCS原型系統(tǒng)應(yīng)用在980G卡特彼勒輪式裝載機(jī)進(jìn)行現(xiàn)場試驗(yàn)并得出結(jié)果結(jié)果。試驗(yàn)結(jié)果表明,自動(dòng)化系統(tǒng)的性能在廣泛的開挖情況下與專業(yè)操作員相媲美。</p><p> 關(guān)鍵詞:模糊行為控制;自動(dòng)挖掘;機(jī)器人挖掘;</p><p><b> 引言</b></p><p> 挖掘部
35、件在地面進(jìn)行周期運(yùn)動(dòng)的機(jī)械如輪式裝載機(jī)、液壓挖掘機(jī)、大型挖掘機(jī)和電纜鏟子,它們的自動(dòng)化有許多潛在的好處。通常,當(dāng)這些機(jī)器是用于采礦或建筑應(yīng)用,它們運(yùn)載大量的材料(土壤,巖石,等)到一個(gè)循環(huán)的卡車車隊(duì)。在這里,挖掘的困難會(huì)急劇變化。這些困難的挖掘情況下,專業(yè)操作人員需要的是高效的裝載。在這些情況下,挖掘時(shí)間能達(dá)到兩倍或三倍,大大降低了機(jī)器的輸出。</p><p> 一個(gè)有效的自動(dòng)挖掘控制系統(tǒng)的使用會(huì)讓每個(gè)操作員擁
36、有專家操作者的能力,并產(chǎn)生以下好處。首先,由于控制系統(tǒng)不會(huì)累了或失去注意力,所以在換班的時(shí)間能夠?qū)崿F(xiàn)一致的操作。第二,控制器能在設(shè)計(jì)范圍內(nèi)的挖掘過程中操作這臺(tái)機(jī)器來提高機(jī)器的可用性。第三,減少了挖掘過程中車輪打滑。然而,在惡劣的施工環(huán)境下要實(shí)現(xiàn)這些好處并有效運(yùn)作,則自動(dòng)化系統(tǒng)的設(shè)計(jì)需要符合以下重要標(biāo)準(zhǔn)。</p><p> 使用的傳感器和執(zhí)行器應(yīng)限于那些目前可用的現(xiàn)代裝載機(jī)。輪式裝載機(jī)鏟斗運(yùn)動(dòng)包括電液驅(qū)動(dòng),斗式位
37、置傳感器和傳動(dòng)有限數(shù)目的參數(shù)測量。復(fù)雜的傳感和驅(qū)動(dòng)系統(tǒng)很容易在惡劣環(huán)境下出故障。其次,系統(tǒng)不應(yīng)該從操作員獲得挖掘困難相關(guān)的特征。這就需要經(jīng)營者作出關(guān)于挖掘難度判斷。在一般情況下,材料的表面特性被加載和其滿斗挖掘過程中潛在的相互作用是開挖難度最大的影響。操作者不能看到表面的下面。因此,沒有操作員輸入的自動(dòng)化系統(tǒng)必須能夠通過對(duì)開挖條件的變化反應(yīng)調(diào)整其挖掘軌跡。</p><p> 由于裝載機(jī)工作在動(dòng)態(tài)的、非結(jié)構(gòu)化的環(huán)
38、境,并且環(huán)境條件未知,變化無常的,難以檢測,所以裝載機(jī)的自動(dòng)挖掘控制是特別困難的。另一方面,人類操作者可以在這些艱難的環(huán)境中對(duì)裝載機(jī)實(shí)現(xiàn)復(fù)雜的控制。重復(fù)挖掘經(jīng)驗(yàn)幫助操作者學(xué)習(xí)機(jī)器的操作技能和如何使其操作模式適應(yīng)動(dòng)態(tài)條件。挖掘機(jī)和其環(huán)境之間相互作用的復(fù)雜性,使得發(fā)展通常用在傳統(tǒng)的控制模式的數(shù)學(xué)模型不切實(shí)際或不可行。因此,亞利桑那大學(xué)的研究人員已經(jīng)開發(fā)的控制系統(tǒng)是采用了集合眾多技術(shù)熟練操作者的挖掘知識(shí)。機(jī)械挖掘控制結(jié)構(gòu)(CARE)是一種混合
39、的體系結(jié)構(gòu),采用了基于行為的控制結(jié)構(gòu)。在最低水平時(shí),它具有反應(yīng)控制,以產(chǎn)生原始的鏟斗行為,和使用有限狀態(tài)機(jī)(FSM)的任務(wù)規(guī)劃(獲取行為仲裁要求的挖掘知識(shí))。模糊邏輯與基于行為的控制的結(jié)合提供了能對(duì)在動(dòng)態(tài)的,不確定的環(huán)境中的挖掘任務(wù)執(zhí)行必要的實(shí)時(shí)響應(yīng)的挖掘控制。</p><p> 幾年前,亞利桑那大學(xué)的研究人員開始了一個(gè)由卡特彼勒公司資助的項(xiàng)目,該項(xiàng)目以CARE為基礎(chǔ)上,開發(fā)、實(shí)施和測試基于輪式裝載機(jī)的自動(dòng)挖掘
40、控制系統(tǒng)(ADCS)。作為原型的ADC的實(shí)現(xiàn)平臺(tái)是980G卡特彼勒輪式裝載機(jī)(見圖1)。該輪式裝載機(jī)重29497公斤,長9.5米,高3.75米,4.7米³斗。以上所列標(biāo)準(zhǔn)進(jìn)行ADCS的設(shè)計(jì)。</p><p> 圖1 卡特彼勒980G輪式裝載機(jī)測試平臺(tái)</p><p> 在本文中,我們展示了CARE的方法已如何被用于開發(fā)基于卡特彼勒980G的原型自動(dòng)挖掘控制系統(tǒng)。ADCS利用現(xiàn)
41、有生產(chǎn)的傳感器和執(zhí)行器,只需要適度的計(jì)算。論文的上半部分詳細(xì)介紹了ADC的控制結(jié)構(gòu),而其余部分的數(shù)據(jù)從現(xiàn)場測試。這些結(jié)果表明,自動(dòng)化系統(tǒng)的性能在挖掘地址變化廣泛方面能與專業(yè)操作者相媲美。</p><p> 概述相關(guān)的自動(dòng)挖掘控制工作</p><p> 地表自動(dòng)移動(dòng)系統(tǒng)的許多潛在的應(yīng)用這個(gè)領(lǐng)域已經(jīng)吸引了大量的研究。通常情況下,研究了兩個(gè)主要領(lǐng)域:挖掘過程的建模和規(guī)劃,自動(dòng)挖掘。在Sing
42、h對(duì)該領(lǐng)域的研究現(xiàn)狀進(jìn)行了全面總結(jié)。這部分主要是自動(dòng)挖掘方向相關(guān)的工作。</p><p> 在一般情況下,軌跡規(guī)劃和控制簡單的方法是無效的,因此一些研究者在挖掘過程中測量力,用于調(diào)整挖掘軌跡。當(dāng)固定力滿足上限時(shí),布洛克和黃使用這些力量研究挖掘軌跡的行為。這些技術(shù)不是高興效的,而且在很多挖掘情況下,往往不能裝滿鏟斗。另外,其他研究人員已經(jīng)選擇了使用一套控制規(guī)則的挖掘控制行為。來自蘭卡斯特大學(xué)的自動(dòng)挖掘機(jī)(LUCI
43、E)就是這種方法的一個(gè)例子。該挖掘機(jī)計(jì)劃試圖遵循初始挖掘軌跡,然后利用設(shè)定的軌跡對(duì)開挖條件做出反應(yīng)。</p><p> 模糊邏輯控制器已經(jīng)通過Sameshima等人開發(fā)。驅(qū)動(dòng)挖掘過程中,它控制每個(gè)相對(duì)斗運(yùn)動(dòng)的自由度。因此,用于每個(gè)控制周期和關(guān)節(jié)速度命令的模糊規(guī)則進(jìn)行的是規(guī)則的加權(quán)輸出。洛克的Autodig方法使用從液壓缸測量的實(shí)際的力。這些力與從鏟斗的速度推出的力相關(guān)。鏟斗每個(gè)自由度的命令是從一個(gè)基于人類操作者
44、在各種土壤條件下如何控制單個(gè)節(jié)點(diǎn)的查找表生成的。這種情況下,土壤條件必須早挖掘前提供給系統(tǒng),而且為了有效的挖掘,材料必須保持相對(duì)均勻。土壤中的意外夾雜物是本系統(tǒng)需要處理的一個(gè)問題。Cannon實(shí)現(xiàn)增強(qiáng)了自主挖掘執(zhí)行加載系統(tǒng)(ALS)中Autodig的算法,實(shí)現(xiàn)大型挖掘機(jī)裝載卡車的任務(wù)完全自動(dòng)化。</p><p> 另一種Shull 的Autodig方法也使用實(shí)際從液壓缸測量的力。這些力被用來確定一個(gè)過一點(diǎn)的力向
45、量,它代表了合成材料抵抗斗運(yùn)動(dòng)的力。目標(biāo)角是在積累的能量的基礎(chǔ)上產(chǎn)生的,鏟斗的運(yùn)動(dòng)指令是為響應(yīng)目標(biāo)角度與力矢量間的差異產(chǎn)生的。遇到復(fù)雜的斗、巖相互作用過程中的高阻力情況時(shí),這種方法會(huì)使鏟斗停止轉(zhuǎn)動(dòng)的時(shí)候。Dasys(數(shù)據(jù)系統(tǒng)環(huán)境模擬器)描述了一個(gè)基于負(fù)載牽引轉(zhuǎn)儲(chǔ)(LHD)機(jī)器的自動(dòng)化的鏟斗裝載系統(tǒng),也使用從鏟斗液壓缸的壓力傳感器獲得的反饋。該系統(tǒng)不使用廢石堆模型控制鏟斗運(yùn)動(dòng),但會(huì) “感覺”被加載的材料而傾斜或使鏟斗擺動(dòng)。這種方法的性能特
46、點(diǎn)是未知的。</p><p> Salcudean等人開發(fā)了一個(gè)基于位置的阻抗控制方法,為操作員在用中小型遙控挖掘機(jī)挖掘時(shí)提供幫助。在英屬哥倫比亞大學(xué)。該系統(tǒng)會(huì)遵循操作員指定的挖掘軌跡直到物料阻力阻礙其進(jìn)步,但是阻抗控制器會(huì)試圖遵循盡可能相近的路徑。另外,Bernold提出了一種阻抗控制器,鏟斗的最優(yōu)軌跡是使用基于土壤的特性和挖掘工具交互的規(guī)劃算法生成。</p><p> Singh提
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
評(píng)論
0/150
提交評(píng)論