版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、<p> EXPERIMENTAL RESEARCH OF REINFORCED CONCRETE COLUMN</p><p> RETROFIT METHODS</p><p> Introduction</p><p> As the infrastructure of our country continues to age, the ne
2、ed for effective retrofittreatments has increased. Many building and bridge structural components no longerprovide capacity sufficient to meet the required code standards. Seismic upgrading andreinforcement protection ar
3、e two of the major issues requiring retrofits. Additionally,many aging structural members no longer provide the load capacity of the original designbecause of concrete cracking, steel corrosion, or other damage. In this&
4、lt;/p><p> Several currently applied methods for retrofitting columns include concrete jacketing,steel jacketing, and fiber reinforced polymer (FRP) jacketing. All three methods havebeen shown to effectively i
5、n increase the axial load capacity of columns. In addition, anew reinforcement product, Prefabricated Cage System (PCS) reinforcement, wasintroduced as a possible reinforcement option for concrete jacket retrofit applica
6、tions.</p><p> Project Scope</p><p> Three retrofit reinforcement options, concrete jacketing, steel jacketing, and FRP</p><p> wrapping, were experimentally analyzed in the rese
7、arch. Three different materials</p><p> provided reinforcement for the concrete jackets: a rebar cage with spiral transverse</p><p> reinforcement, welded wire fabric (WWF), and the aforementi
8、oned PCS. All specimenswere tested under axial compression loading only. Applied load and displacement weremeasured for all specimens throughout testing until failure. Additionally, response of theloaded specimens was ob
9、served and documented throughout the testing. Behavior of thenewly introduced PCS reinforcement was compared with traditionally used retrofitapplications already currently utilized in the structural engineering industry.
10、 </p><p> Project Summary</p><p> Seventeen circular columns were constructed and tested to failure in compression. First,similar reinforced concrete base columns were constructed with spiral
11、transverse</p><p> reinforcement. All base specimens had the same dimensions, transverse, and longitudinaleinforcement. The base specimens were then retrofitted with the different retrofitmethods previously
12、 discussed. One specimen, referred to as the base specimen, wastested without any retrofit applied. Three specimens were retrofitted with a spiral rebarreinforced concrete jacket. Two specimens were reinforced with a wel
13、ded wire fabricreinforced concrete jacket. Three specimens were retrofitted with FRP wraps an</p><p> Nine specimens had the entire cross section of the base column and retrofit area loaded.This simulated a
14、 retrofit condition when the applied load is distributed across the entirecross section. Five specimens had the cross section of only the base column loaded,which simulated a condition when the load is only applied to th
15、e original member. Threeother specimens had increased lateral reinforcement spacing with similar transversereinforcement strength per spacing. These specimens also had the enti</p><p> RETROFIT OF EXISTING
16、STRUCTURES</p><p> Many structures have historically been constructed using reinforced concrete. Typicalordinary concrete consists of four constituents: gravel, sand, water, and cement.Reinforced concrete h
17、as some type of reinforcement, typically steel, combined withconcrete to produce a stronger system than plain concrete. Concrete is strong in</p><p> compression but weak in tension. Tensile forces cause co
18、ncrete to crack and eventuallyfail in a brittle manner at stresses significantly lower than the compression strength ofconcrete. Steel, or another type of reinforcement material, can be used to compensate forthe weak ten
19、sile strength of concrete. This system is referred to as reinforced concrete.</p><p> As reinforced concrete ages, a variety of detrimental effects can occur. These includespalling, flaking, or cracking of
20、the concrete, and subsequent corrosion of the reinforcingsteel. These occurrences can significantly affect the strength of structural members.Members displaying these adverse affects may be rehabilitated using an appropr
21、iateretrofit method.</p><p> Retrofitting is typically done for two reasons: rehabilitation or strengthening. As</p><p> previously discussed, rehabilitation is fixing the structural deficienc
22、ies of a damaged</p><p> structure or structural member. This may be necessary for aging members that no longerdisplay the strength of the original design. Strengthening increases the load-carryingcapacity
23、of a structural member (Ersoy et al. 1993). This may be necessary if thesupported load is altered through the life of the structural member, or if current designstandards have more stringent reinforcement requirements. A
24、dditionally, structuralmembers in seismic regions may need to be upgraded to current seismic requir</p><p> Retrofitting can be applied to any structural members, including beams and columns.Several methods
25、 are traditionally utilized for retrofitting. These include concretejacketing, steel jacketing, and FRP strengthening (Wipf et al. 1997). Reinforcement forconcrete jackets can be provided by rebar reinforcement or welded
26、 wire fabric (WWF).Additionally, a relatively new product, Prefabricated Cage System reinforcement (PCS),is suggested as a possible reinforcement alternative for concrete jacket retr</p><p> PCS Benefits<
27、;/p><p> PCS reinforcement has some unique properties. The longitudinal and lateral</p><p> reinforcement for PCS are located the same distance from the center of the member</p><p>
28、 cross-section. This provides increased flexural capacity, using the same amount of steelas a traditional rebar system, and results in more efficient use of the reinforcing steel.The monolithic action of PCS eliminates s
29、eparation of longitudinal and transverseeinforcement. Additionally, PCS reinforcement is spread in a planar configurationwhich offers greater confinement than rebar reinforcement, as displayed in Figure 2.4.Thickness of
30、the PCS steel determines the dimensions of the reinforcement </p><p> PCS reinforcement offers several additional benefits. Dimensions of the reinforcementare determined by the designer to produce any desir
31、ed amount of transverse andlongitudinal reinforcement. This allows a great deal of flexibility and efficiency in thedesign process, as reinforcement choices are not limited to available stock materials.Additionally, PCS
32、reinforcement can be fabricated off-site and immediately placed for concrete casting without additional fieldwork, such as tying, cutting, or be</p><p> Retrofit Methods</p><p> As previously
33、mentioned, common retrofit techniques include concrete, FRP, and steeljackets. Concrete jackets are constructed by enlarging the existing cross section with anew layer of concrete and reinforcement (Ersoy et al. 1993). T
34、his reinforcement istraditionally provided by hoop or spiral rebar, or welded wire fabric. FRP reinforcementis typically applied two ways: prefabricated jackets or wraps. Both methods have been experimentally researched
35、(Morshed and Kazemi 2005). Steel jackets are c</p><p> Concrete Jacketing</p><p> Addition of a concrete jacket is used to enhance flexural strength, ductility, and shearstrength of columns. T
36、his technique is more commonly used for building columns buthas been applied to some bridge members in Japan. The enhanced confinement isachieved with the use of ties or spirals at a small pitch, or transverse reinforcem
37、entspacing (Priestley et al. 1996). Concrete jackets can be used to retrofit beams as well ascolumns (Cheong and MacAlevey 2000). Additional materials can be used to rein</p><p> Rebar Reinforcement</p&g
38、t;<p> Concrete jacketed columns with hoop and spiral reinforcement effectively enhance thestructural capacity of retrofitted members. Ersoy et al. (1993) ran two series of tests tostudy the behavior of strengthe
39、ned and repaired concrete jacketed columns. The firstseries compares the behavior of jacketed columns with a monolithic reference specimenunder monotonic axial loading. All the concrete for the monolithic specimen was ca
40、stwith the base column and retrofit reinforcement in place, to provide a sp</p><p> Steel Jacketing</p><p> Steel jackets prevent concrete from expanding laterally as a result of high axial<
41、;/p><p> compression strains. The steel jacket is equivalent to continuous hoop reinforcement andcan be used for circular columns or rectangular columns with slight modifications, asshown in Figure 2.10. Steel
42、 jacketing of rectangular columns is not recommended</p><p> because while shear strength is enhanced, flexural ductility is only provided at thecorners. An elliptical steel jacket with concrete infill shou
43、ld be provided for rectangularmembers to fully confine all the concrete (Priestley et al. 1996).</p><p> A comprehensive two-part study was performed by Priestley et al. (1994 a, b) to</p><p>
44、 determine the enhanced shear strength provided by steel jacket retrofitting. The first partof the research focuses on theoretical considerations and test design. It is determined thatACI design equations are overly cons
45、ervative and new design equations are presented forcircular or rectangular columns in need of shear enhancement. The second part of theresearch focuses on the actual testing of the columns designed according to the propo
46、sedequations. It is concluded that steel jackets significantl</p><p> FRP Jacketing</p><p> Fiber reinforced polymer (FRP) confinement can be provided using several compositematerials includin
47、g fiberglass, carbon fiber, and Kevlar bonded to the confined concretesurface using epoxy (Priestley et al. 1996). Weight and cross-section of the retrofittedmember are not significantly affected with FRP jackets. FRP ja
48、ckets are most applicablefor circular columns, as stress concentrations can develop in the FRP wrap around thecorners of square or rectangular cross-sections. FRP jackets can be us</p><p><b> FRP Wrap
49、s</b></p><p> FRP wraps have several benefits including high strength, light weight, resistance tocorrosion, low cost, and versatility (Saadatmanesh et al. 1997). FRP wrapping is</p><p>
50、 performed by first cleaning the surface of the member to be retrofitted. Epoxy or resin isthen used to attach the flexible FRP fabric to the surface of the member to be retrofitted.The fabric can be applied dry, but the
51、 preferred method is to soak the fabric in epoxybefore application to allow for better cohesion with the surface of the member to beretrofitted. The fabric is then smoothed out to ensure no air pockets exist and extra ep
52、oxyis squeezed out the sides. A new layer of epoxy should be </p><p> Saadatmanesh et al. (1997) applies FRP wraps to repair severely damaged reinforcedconcrete columns. Critically stressed regions near the
53、 column footing joint are repairedwith FRP wrap. It is evident from the results that FRP composite wraps effectivelyrestore flexural strength and ductility in damaged columns. Similarly, Gergely et al.(1998) uses carbon
54、FRP wrap to test the performance enhancement of reinforced concretecap beams and cap beam-column joints. The research shows that FRP wraps cansi</p><p> Xiao and Wu (2003b) perform a comprehensive research
55、program to study the behaviorof concrete confined by various types of FRP wraps. Carbon fiber as well as E-glasswraps are investigated. The methods of application vary between in situ (hand layup)and machine-wound applic
56、ation. Again, it is determined that FRP composite jacketssignificantly increase the strength and ductility of concrete</p><p> 試驗研究鋼筋混凝土柱改造方法</p><p><b> 簡介:</b></p><p>
57、; 隨著我國基礎(chǔ)設(shè)施不斷老化,因此需要進(jìn)行改造的設(shè)施不斷增加。許多建筑物和橋梁的結(jié)構(gòu)組件不再能夠提供足夠的強度來滿足要求。升級加固是應(yīng)對這一重大問題的方法之一。此外,由于混凝土開裂,鋼筋銹蝕,或其他損害,使許多公共設(shè)施不再提供原設(shè)計要求的承載能力。在本研究中,對怎樣提高鋼筋混凝土柱軸向負(fù)載能力進(jìn)行了測試和分析。</p><p> 目前應(yīng)對方法包括混凝土柱加裝護(hù)套,鋼套管,增強纖維復(fù)合材料(FRP)的護(hù)套。以上
58、三種方法已被證明能有效地提高混凝土柱軸向負(fù)載能力。此外,新技術(shù)PCS加固,有可能成為加固混凝土柱的改造方法。</p><p><b> 項目范圍:</b></p><p> 三種加固改造方案具體包括護(hù)套、鋼套管、及玻璃鋼包裝。三種不同方案提供給混凝土一定的承載力:一個螺旋橫向鋼筋混凝、WWF和上述構(gòu)件。所有標(biāo)本軸向載荷下進(jìn)行了測試壓縮,應(yīng)用負(fù)載和整個位移測量,直到
59、故障檢測達(dá)到標(biāo)準(zhǔn)為止。此外,并對整個測試進(jìn)行了觀察和記錄。新推出的加固技術(shù)與目前使用在結(jié)構(gòu)工程領(lǐng)域的應(yīng)用程序傳統(tǒng)技術(shù)進(jìn)行了比較。并對其優(yōu)勢、劣勢進(jìn)行了一一鑒定。此外,此項目還分別給出了對混凝土柱改造方法基礎(chǔ)學(xué)的作者:Mander et al.(1988年)和蔡(1987)。</p><p><b> 項目主要內(nèi)容:</b></p><p> 十七圓柱的構(gòu)建和測試以
60、失敗而告終。首先,鋼筋混凝土構(gòu)建螺旋柱的基礎(chǔ)設(shè)施都有相同的尺寸?;诖藰?biāo)準(zhǔn),然后應(yīng)用上前面討論過的不同改造方法。此標(biāo)準(zhǔn),簡稱為基標(biāo),測試時被任何改造所應(yīng)用。對三個標(biāo)本進(jìn)行改造與螺旋鋼筋鋼筋混凝土外套(用鋼筋焊接線織物鋼筋混凝土外套)。三標(biāo)本進(jìn)行改造包裝,兩個玻璃鋼更多的標(biāo)本進(jìn)行改造。此外,六名標(biāo)本用件加固鋼筋混凝土外套,包括兩種不同厚度構(gòu)件。九標(biāo)本有基列的整個橫截面和改造面積進(jìn)行加載。 </p&
61、gt;<p> 九標(biāo)本有基列的整個橫截面和改造面積加載,這模擬了改造載荷時的條件是在整個分布式截面。標(biāo)本有五只基受壓柱截面,它模擬了當(dāng)負(fù)載為只適用于原始狀態(tài)下的條件。每間隔一段時間,其他三標(biāo)本增加了類似的橫向箍筋間距鋼筋強度。這些標(biāo)本也有整個基礎(chǔ)柱截面改造。</p><p><b> 改造現(xiàn)有結(jié)構(gòu): </b></p><p> 歷史上有很多結(jié)構(gòu)是由
62、鋼筋混凝土建成。典型普通混凝土包括四個成分:礫石、沙子、水和水泥。一般情況下,鋼筋混凝土加固具有一定的規(guī)范,結(jié)合混凝土產(chǎn)生承載力比普通混凝土更好。混凝土柱部分地方的壓縮,會使其承載力降低。拉力會導(dǎo)致混凝土產(chǎn)生裂縫,并導(dǎo)致最終失敗。鋼、鋼筋或其他種類的材料,可用于彌補弱強度混凝土,這一系統(tǒng)被稱為鋼筋混凝土。</p><p> 隨著鋼筋混凝土的老化,有可能出現(xiàn)許多的不利影響。這些影響包括剝落、剝落、或?qū)е禄炷灵_裂
63、、腐蝕和隨后的強度降低。這些事件可以明顯影響結(jié)構(gòu)構(gòu)件的強度。使用適當(dāng)?shù)男迯?fù)改造的方法會降低這些不利影響。</p><p> 兩種典型的做法:修復(fù)、加強。如前所述,可以修復(fù)已損壞的結(jié)構(gòu)、性缺陷結(jié)構(gòu)或結(jié)構(gòu)構(gòu)件。這可能會使老化的混凝土柱不再顯示原設(shè)計強度。加強提高了承載能力結(jié)構(gòu)的成員(Ersoy et al.1993年)。如果支持負(fù)載通過改變結(jié)構(gòu)構(gòu)件的生活,或者目前的設(shè)計標(biāo)準(zhǔn)更嚴(yán)格的要求增援,這可能是非常必要的。此外
64、,結(jié)構(gòu)在地震區(qū)域的成員可能需要升級到當(dāng)前的抗震要求。</p><p> 改造可以適用于任何結(jié)構(gòu)構(gòu)件,包括梁,柱。傳統(tǒng)上使用的幾種方法的改造包括混凝土套管、鋼套管,以及玻璃鋼加強(Wipf et al. 1997年)。加固具體的方法可以由鋼筋加固或電焊布(WWF)的。此外,一個相對較先進(jìn)的產(chǎn)品,預(yù)制鋼筋籠系統(tǒng)(PCS)的,建議作為具體措施來進(jìn)行具體的操作。</p><p><b>
65、; PCS優(yōu)點:</b></p><p> 構(gòu)件加固有一些獨特的性質(zhì)??v向和橫向用于PCS加固位于從會員中心相同距離橫截面。這可以增加抗彎能力,作為一個傳統(tǒng)的鋼筋體系,使用相同數(shù)量的鋼材,并在更多的鋼筋有效使用效果。個人電腦的整體行動,消除了縱向和橫向分離鋼筋。此外,藥盒加強是分布在一個平面配置提供更大的約束比鋼筋加固。在PCS鋼材厚度決定了加固圍的尺寸混凝土的強度。</p><
66、;p> 構(gòu)件加固提供了幾個額外的好處。鋼筋的尺寸是由設(shè)計師產(chǎn)生任何所需的要求鋼筋。這允許在一個很大的靈活性和效率設(shè)計過程中,增強混凝土類型的選擇并不限于現(xiàn)有庫存材料。此外,混凝土柱加固在制備場完成,立即放置混凝土澆注,無需額外實地考察,如捆綁,切割或彎曲加固,那樣會延長施工時間。其外還提供了一個現(xiàn)場制作增加了對鋼筋的質(zhì)量控制水平。在PCS生產(chǎn),尺寸和間距準(zhǔn)確高會最大限度地減少人為錯誤的機會和消除了低于標(biāo)準(zhǔn)桿詳細(xì)或不充分的施工驗收
67、。這反過來說,這樣會使一個建設(shè)項目的安全系數(shù)增加。改制方法:</p><p> 如前所述,共同改造技術(shù),包括混凝土,玻璃鋼,鋼夾克。混凝土構(gòu)造夾克通過擴大與現(xiàn)有的橫截面新層混凝土和鋼筋((Ersoy et al.。1993年)。這樣加強了傳統(tǒng)上所提供的鋼筋箍或螺旋,或電焊面料。玻璃鋼加固通常采用兩種方法:預(yù)制夾克或包裝。這兩種方法已被實驗研究(Morshed and Kazemi 2005年)。鋼構(gòu)造夾克與周
68、圍放置構(gòu)件直徑略大鋼管,然后被改造。現(xiàn)有構(gòu)件之間的面積和鋼管通常是充滿了泥漿(Priestley et al.1996年)?;炷琉B(yǎng)護(hù):</p><p> 加一個具體夾克用來增強彎曲強度,延展性和剪切強度列。這種技術(shù)是更普遍用于建筑系列,但已被應(yīng)用到一些在日本橋體中。增強的混凝土柱實現(xiàn)了與在一個小攤位使用關(guān)系或螺旋,或橫向加固間距(Priestley et al.1996年)?;炷镣馓卓捎糜诟脑煲约傲毫校–
69、heong and MacAlevey2000年)。補充材料,可用于加強的改造,只要強度增強。</p><p><b> 鋼筋混凝土加固:</b></p><p> 與混凝土套箍加固柱和螺旋可以有效提高成型構(gòu)件的結(jié)構(gòu)能力。Priestley et al. (1993)做了一系列的測試,研究如何加強和修復(fù)混凝土設(shè)施的行為。相比之下,單片系列參考樣本的夾套列的行為單調(diào)
70、軸向載荷。所有為單片標(biāo)本混凝土鑄與基列和加固改造到位,為客戶提供一個標(biāo)本與完美的互動和債券之間的基列和改造物質(zhì)。箍鋼筋是用在基列和改造加固,設(shè)施被應(yīng)用在兩種情況下:經(jīng)過壓縮量為應(yīng)用和刪除,以及軸向負(fù)荷,而仍然適用。它確定卸載后設(shè)施表現(xiàn)良好,達(dá)到80到90百分比作為整體實力的參考標(biāo)本。維修時應(yīng)用列夾克 ,仍在載入沒有履行好,只達(dá)到百分之五十的軸向負(fù)載 由單片標(biāo)本。第二部份的實驗系列研究的有效性 夾克與混凝土柱軸向聯(lián)合載荷下進(jìn)行測試和彎曲。
71、這兩種修復(fù) 充分表現(xiàn)和加強夾克單調(diào)和反復(fù) 載入中。</p><p><b> 鋼筋混凝土套管:</b></p><p> 高軸橫向結(jié)果壓縮株,就是為了防止混凝土鋼夾克的擴大。該鋼套相當(dāng)于連續(xù)箍加固可用于圓柱或矩形柱稍作修改。矩形柱鋼護(hù)套不應(yīng)用于當(dāng)剪切強度提高的情況下,彎曲韌性只提供在設(shè)施角落里。與混凝土填充橢圓形鋼套,應(yīng)提供用于矩形設(shè)施充分集中的混凝土(Pries
72、tley et al.1996年)。</p><p> 一個全面的兩部分的研究是由Priestley et al. (1994年a,b)確定剪切強度增強鋼套改造提供。第一部分該研究側(cè)重于理論思考和試驗設(shè)計。它確定ACI的設(shè)計公式過于保守和新的設(shè)計方程,提出了需要加強的剪切圓形或矩形柱。第二部分研究根據(jù)建議方程主要集中設(shè)施的實際設(shè)計的測試。它的結(jié)論是顯著提高鋼的夾克和剪切強度。彎曲韌性剪切缺陷列。</p&g
73、t;<p><b> FRP套管:</b></p><p> 纖維增強復(fù)合材料(FRP)的限制,可以使用多種復(fù)合材料提供包括玻璃纖維,碳纖維材料和凱夫拉爾保稅的約束混凝土表面采用環(huán)氧(Priestley et al. 1996年)。部分改造設(shè)施都沒有明顯影響玻璃鋼夾克。玻璃鋼夾克是最適用圓列,應(yīng)力集中可以開發(fā)在FRP環(huán)繞角落的方形或長方形橫截面。玻璃鋼外套可用于矩形或其他形
74、狀的成員,如果形狀進(jìn)行修改,以防止壓力來自發(fā)展中國家的發(fā)展。玻璃鋼改造兩種類型:包裝和預(yù)制復(fù)合外套通常利用</p><p><b> FRP包裝: </b></p><p> 玻璃包裝有幾個好處,包括高強度,重量輕,耐腐蝕,成本低,通用性(Priestley et al。1997年)。玻璃鋼包皮首先進(jìn)行清洗的設(shè)施面要翻新。環(huán)氧樹脂或樹脂然后用玻璃鋼靈活的附加織物表
75、面的設(shè)施被改造。這種織物可用于干燥,但首選的方法是在織物浸泡在環(huán)氧樹脂申請前,以便與該設(shè)施的表面要更好地凝聚進(jìn)行改造。然后,平滑的面料,確保無氣泡存在的和額外的環(huán)氧樹脂擠出來的兩側(cè)。新的環(huán)氧樹脂層應(yīng)適用于各層之間的布及環(huán)氧樹脂對織物表面最外層最后一層。該包裝應(yīng)然后讓其在常溫下固化。Saadatmanesh et al. (1997)適用于玻璃鋼纏繞來修復(fù)加固受損嚴(yán)重混凝土柱。危重強調(diào)柱腳關(guān)節(jié)附近的地區(qū)被修復(fù)用玻璃鋼包。這是從結(jié)果可見,玻
76、璃鋼復(fù)合包裝有效恢復(fù)受損的柱抗彎強度和韌性。同樣,Saadatmanesh et al.(1998年)采用碳玻璃鋼包,以測試鋼筋混凝土性能的提高帽帽梁及梁柱接頭。研究表明,玻璃包裝可以顯著提高剪切能力和延性帽梁和蓋梁,柱接頭Hadi(2003)執(zhí)行對混凝土梁和類似的測試結(jié)論是玻璃鋼包裝有助于承載能力,以及鋼筋彎曲強度,混凝土梁。玻璃鋼層的增加而增加的抗彎強度</p><p> Xiao and Wu(2003年
77、b)執(zhí)行了一項全面的研究方案,研究行為包裝由玻璃鋼約束各種混凝土。碳纖維以及E -玻璃包裝進(jìn)行了研究。應(yīng)用不同的方法來使是之間的原位(hand layup)和機器傷口中的應(yīng)用。再次,這是確定玻璃鋼復(fù)合外套,明顯著提高混凝土的強度和韌性。</p><p> Mùqián shēnqǐng de jǐ gè fāngfǎ bāokuò hùnníngtǔ
78、zhù jiā zhuāng hù tào,Gāng tào guǎn, xiānwéi zēngqiáng fùhé cáiliào (FRP) de hù tào. Suǒyǒu sān zhǒng fāngfǎBèi zhèngmíng néng yǒuxià
79、o de tígāo zhù zhóu xiàng fùzǎi nénglì. Cǐwài,Xīn de zēngqiáng chǎnpǐn, yùzhì lóng xìtǒng (PCS) jiāgù, shìJièshào le zuòwéi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鋼筋混凝土外文翻譯
- 鋼筋混凝土外文翻譯
- [雙語翻譯]--混凝土外文翻譯--cfrp 加固細(xì)長鋼筋混凝土柱的全尺寸試驗
- 土木外文翻譯--- 鋼筋混凝土
- 2013年--混凝土外文翻譯--cfrp 加固細(xì)長鋼筋混凝土柱的全尺寸試驗
- 鋼筋混凝土框架柱突然失效試驗研究.pdf
- 外圍橡膠鋼筋混凝土柱的試驗研究.pdf
- 鋼筋混凝土柱工作應(yīng)力試驗與研究.pdf
- 鋼筋混凝土柱托換的試驗研究.pdf
- 鋼筋混凝土柱抗落石撞擊試驗研究.pdf
- 銹蝕鋼筋混凝土矩形柱擬動力試驗研究.pdf
- 外文翻譯---混凝土,鋼筋混凝土和預(yù)應(yīng)力混凝土
- 鋼筋混凝土墩柱的抗爆性能試驗研究.pdf
- PVC管鋼筋混凝土柱軸心受壓試驗研究.pdf
- 碳纖維加固鋼筋混凝土偏壓柱試驗研究.pdf
- 銹蝕鋼筋混凝土柱承載力試驗研究.pdf
- 鋼筋混凝土柱地震損傷演化試驗研究及性能評估方法.pdf
- 鋼-混凝土組合梁與鋼筋混凝土柱節(jié)點設(shè)計方法的試驗研究.pdf
- 基于性能抗震設(shè)計的鋼筋混凝土柱試驗研究.pdf
- 鋼筋混凝土矩形截面柱繞絲加固試驗研究.pdf
評論
0/150
提交評論