版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、<p> 附錄Ⅰ 外文翻譯(原文)</p><p> RESEARCH OF CELLULAR WIRELESS COMMUNATION SYSTEM</p><p><b> Abstract</b></p><p> 1897, Marconi demonstrates the first practical applic
2、ation of the mobile radio communication, opening up a precedent of mobile communication, wireless communication in the modern sense was born. From that day onwards, the wireless communication technology is committed to a
3、chieving better communication quality, lower power consumption, smaller size and cheaper price. In the next 60 years, a number of landmark technological breakthroughs to promote the further development of mobile communic
4、ations.</p><p> 1 Introduction</p><p> A wide variety of wireless communication systems have been developed to provide access to the communications infrastructure for mobile or fixed users in
5、a myriad of operating environments. Cellular mobile communication system by the exchange of Network Subsystem (NSS), the wireless base station subsystem (BSS) and mobile station (MS) has three major components. Switched
6、network subsystem (NSS) completion of the exchange functional and customer data, and mobility management, security management d</p><p> Wireless communication links experience hostile physical channel chara
7、cteristics,such as time-varying multipath and shadowing due to large objects in the propagation path. In addition, the performance of wireless cellular systems tends to be limited by interference from other users, and fo
8、r that reason, it is important to have accurate techniques for modeling interference. These complex channel conditions are difficult to describe with a simple analytical model, although several models do provid</p>
9、<p> Liking wireless links, the system performance of a cellular radio system is most effectively modeled using simulation, due to the difficulty in modeling a large number of random events over time and space. T
10、hese random events, such as the location of users, the number of simultaneous users in the system, the propagation conditions, interference and power level settings of each user, and the traffic demands of each user,comb
11、ine together to impact the overall performance seen by a typical user in </p><p> The link performance is a small-scale phenomenon, which deals with the instantaneous changes in the channel over a small loc
12、al area, or small time duration, over which the average received power is assumed constant . Such assumptions are sensible in the design of error control codes, equalizers, and other components that serve to mitigate the
13、 transient effects created by the channel. However, in order to determine the overall system performance of a large number of users spread over a wide geogr</p><p> Cellular systems achieve high capacity (e
14、.g., serve a large number of users) by allowing the mobile stations to share, or reuse a communication channel in different regions of the geographic service area. Channel reuse leads to co-channel interference among use
15、rs sharing the same channel, which is recognized as one of the major limiting factors of performance and capacity of a cellular system. An appropriate understanding of the effects of co-channel interference on the capaci
16、ty and performance </p><p> 2 Cellular Radio System</p><p> System-Level Description:</p><p> Cellular systems provide wireless coverage over a geographic service area by dividi
17、ng the geographic area into segments called cells as shown in Figure 2-1. Depending on the size of the service area, the cell in the cellular mobile communication system usually can be divided into four categories: the p
18、icocell (picocell), microcell(microcell), macrocells (macrocell), satellite beam (satellitebeam). This is called a hierarchicalcompared to cellular mobile communication systems, and conventional si</p><p>
19、Figure 2-1 Basic architecture of a cellular communications system</p><p> High-capacity cellular systems employ frequency reuse among cells. This requires that co-channel cells (cells sharing the same frequ
20、ency) are sufficiently far apart from each other to mitigate co-channel interference. Channel reuse is implemented by covering the geographic service area with clusters of N cells, as shown in Figure 2-2, where N is know
21、n as the cluster size.</p><p> The RF spectrum available for the geographic service area is assigned to each cluster, such that cells within a cluster do not share any channel . If M channels make up the en
22、tire spectrum available for the service area, and if the distribution of users is uniform over the service area, then each cell is assigned M/N channels. As the clusters are replicated over the service area, the reuse of
23、 channels leads to tiers of co-channel cells, and co-channel interference will result from the propagatio</p><p><b> ?。?-1)</b></p><p> where R is the maximum radius of the cell (th
24、e hexagon is inscribed within the radius). Therefore, we can immediately see from Figure 2-2 that a small cluster size (small reuse distance ), leads to high interference among co-channel cells.</p><p> Fig
25、ure 2-2 Cell clustering:Depiction of a three-cell reuse pattern</p><p> The level of co-channel interference received within a given cell is also dependent on the number of active co-channel cells at any in
26、stant of time. As mentioned before, co-channel cells are grouped into tiers with respect to a particular cell of interest. The number of co-channel cells in a given tier depends on the tier order and the geometry adopted
27、 to represent the shape of a cell (e.g., the coverage area of an individual base station). For the classic hexagonal shape, the closest co-channel</p><p> Co-channel interference is recognized as one of the
28、 major factors that limits the capacity and link quality of a wireless communications system and plays an important role in the tradeoff between system capacity (large-scale system issue) and link quality (small-scale is
29、sue). For example, one approach for achieving high capacity (large number of users), without increasing the bandwidth of the RF spectrum allocated to the system, is to reduce the channel reuse distance by reducing the cl
30、uster siz</p><p> The level of interference within a cellular system at any time is random and must be simulated by modeling both the RF propagation environment between cells and the position location of th
31、e mobile users. In addition, the traffic statistics of each user and the type of channel allocation scheme at the base stations determine the instantaneous interference level and the capacity of the system.</p>&l
32、t;p> The effects of co-channel interference can be estimated by the signal-tointerference ratio (SIR) of the communication link, defined as the ratio of the power of the desired signal S, to the power of the total in
33、terference signal, I. Since both power levels S and I are random variables due to RF propagation effects, user mobility and traffic variation, the SIR is also a random variable. Consequently, the severity of the effects
34、of co-channel interference on system performance is frequently analyz</p><p><b> ?。?-2)</b></p><p> Where is the probability density function (pdf) of the SIR. Note the distin
35、ction between the definition of a link outage probability, that classifies an outage based on a particular bit error rate (BER) or Eb/N0 threshold for acceptable voice performance, and the system outage probability that
36、considers a particular SIR threshold for acceptable mobile performance of a typical user.</p><p> Analytical approaches for estimating the outage probability in a cellular system, as discussed in before, re
37、quire tractable models for the RF propagation effects, user mobility, and traffic variation, in order to obtain an expression for . Unfortunately, it is very difficult to use analytical models for these effects, d
38、ue to their complex relationship to the received signal level. Therefore, the estimation of the outage probability in a cellular system usually relies on simulation, which </p><p> References</p><
39、;p> [1] Protocol independent multicast-sparse mode (PIM-SM): protocol specification [S].IETF RFC 2362,1998.</p><p> [2] Protocol independent multicast-sparse mode (PIM-SM): implementation document[S
40、].IETF,1997.</p><p> [3] Internet Group Management Protocol,Version 2[S].IETF RFC2236,1997.</p><p> [4] N.Yee.J. P. Linnarz and G. Fettweis. Multi- carrier CDMA in indoor wireless radio net
41、works[C], Proceedings IEEE International Symposium on Personal,Indoor and Mobile Radio Commun. (PIMRC’93),YoKohama,Jpan,1993.9:109~113.</p><p> [5] T. Pollet, M.V.Bladel and M Moeneclaey. BER sensitivity
42、of OFDM system to</p><p> carrier frequency offset and wiener phase Noise[J]. IEEE Transaction Communications,1995.2/3/4,43;191~193.</p><p> [6] E.A. Sourour,M, Nakagawa, Performance of ortho
43、gonal multi-carrier CDMA in a multi-path fading channel[J]. IEEE Trans, on Comm.,1996,3,44(3):356~367.</p><p> [7] Lee W C Y. Mobile Communication Engineering. New York: McGraw-Hill, 1982</p><p&
44、gt; [8] Parsons J D, Gardiner J G. Mobile Communication System. New York: John Wiley and Sons, Inc.,1989</p><p> [9] Lee W C Y. Mobile Cellular Telecommunication Systems. New York: McGraw-Hill, 1989<
45、;/p><p> [10] Lee W C Y. Spectrum Efficiency in Cellular. IEEE Trans, 1989; VT-38(2)</p><p> [11] W. C. Y. Lee, Mobile Communication Engineering: Theory and </p><p> Appli
46、cations, McGraw-Hill,New York,1982.</p><p> [12] S. O.Rice,“Mathematical Analysis of Random Noise”</p><p> [13] H. J.Schulte, Jr., and W. A. Cornell,“Multi-area mobile telephone system,”IRE
47、Trans. Vehicular Communications,vol. VC-9,pp.49-53,May 1960.</p><p> [14] D. Noble,“The history of land -mobile radio communications,”IEEE Vehicular Technology Transactions,pp. 1406-1406,May 1962.</p&g
48、t;<p> 附錄Ⅱ 外文翻譯(譯文)</p><p> 蜂窩無線通信系統(tǒng)的研究</p><p><b> 摘要</b></p><p> 1897年,馬可尼(Marchese Guglielmo Marconi)演示了移動無線電通信的第一次實際應(yīng)用,開啟了移動通信的先河,現(xiàn)代意義下的無線通信從此誕生。從這一天起,無線通信
49、技術(shù)致力于實現(xiàn)更好的通信質(zhì)量,更低的功耗,更小的體積和更便宜的價格。在接下來的60多年里,眾多里程碑式的技術(shù)突破推動了移動通信進(jìn)一步發(fā)展。直到80年代初,隨著第一個蜂窩移動通信系統(tǒng)的建立,移動通信系統(tǒng)從此進(jìn)入了繁榮發(fā)展的時期。蜂窩系統(tǒng)經(jīng)歷了指數(shù)性的快速增長,充分顯示出無線通信有著光明的前景。蜂窩通信系統(tǒng)允許大量移動用戶無縫地、同時地利用有限的射頻(radio frequency,RF)頻譜與固定基站中的無線調(diào)制解調(diào)器通信?;窘邮彰恳粋€
50、移動臺發(fā)送來的射頻信號,并把他們轉(zhuǎn)換到基帶或者帶寬微波鏈路,然后傳送到移動交換中心(MSC),再由移動交換中心連入公用交換電話網(wǎng)(PSTN)。同樣的,通信信號也可以從PSTN傳送到基站,再從這里發(fā)送個移動臺。蜂窩系統(tǒng)可以采用頻分多址(FDMA)、時分多址(TDMA)、碼分多址(CDMA)或者空分多址(SDMA)中的任何一種技術(shù)。</p><p><b> 1 概述</b></p>
51、;<p> 人們開發(fā)出了許多無線通信系統(tǒng),為不同的運(yùn)行環(huán)境中的固定用戶或移動用戶提供了接入到通信基礎(chǔ)設(shè)施的手段。蜂窩移動通信系統(tǒng)主要由交換網(wǎng)路子系統(tǒng)(NSS)、無線基站子系統(tǒng)(BSS)和移動臺(MS)三大部分組成。交換網(wǎng)路子系統(tǒng)(NSS)主要完成交換功能和客戶數(shù)據(jù)與移動性管理、安全性管理所需的數(shù)據(jù)庫功能。當(dāng)今大多數(shù)無線通信系統(tǒng)都是基于蜂窩無線電概念之上的。蜂窩通信系統(tǒng)允許大量移動用戶無縫地、同時地利用有限的射頻(radi
52、o frequency,RF)頻譜與固定基站中的無線調(diào)制解調(diào)器通信?;窘邮彰恳粋€移動臺發(fā)送來的射頻信號,并把他們轉(zhuǎn)換到基帶或者帶寬微波鏈路,然后傳送到移動交換中心(MSC),再由移動交換中心連入公用交換電話網(wǎng)(PSTN)。同樣的,通信信號也可以從PSTN傳送到基站,再從這里發(fā)送個移動臺。蜂窩系統(tǒng)可以采用頻分多址(FDMA)、時分多址(TDMA)、碼分多址(CDMA)或者空分多址(SDMA)中的任何一種技術(shù)。蜂窩無線網(wǎng)絡(luò)由于其成熟的組網(wǎng)
53、技術(shù),良好的覆蓋能力以及合理的建網(wǎng)成本得到了最大范圍的應(yīng)用。目前的GSM/GPRS,CDMA1X,以及WCDMA,CDMA2000和TDS-CDMA</p><p> 無線通信鏈路具有惡劣的物理信道特征,比如由于傳播途徑中有再大的障礙物,會產(chǎn)生時變多徑和陰影。此外,無線蜂窩系統(tǒng)的性能還會受限于來自其他用戶的干擾,因此,對干擾進(jìn)行準(zhǔn)確的建模就很重要。很難用簡單的解析模型來描述復(fù)雜的信道條件,雖然有集中模型確實易于
54、解析求解并與信道實測數(shù)據(jù)比較相符,不過,即使建立了完美的信道解析模型,再把差錯控制編碼、均衡器、分集及網(wǎng)絡(luò)模型等因素都考慮再鏈路中之后,要得出鏈路性能的解析在絕大多數(shù)情況下任然是很困難的甚至是不可能的。因此,在分析蜂窩通信鏈路的性能時,常常需要進(jìn)行仿真。在無線通信系統(tǒng)中,有三種影響信號傳播的基本機(jī)制:反射、繞射和散射。反射發(fā)生在當(dāng)電磁波遇到比波長大得多的物體時,發(fā)生于地球表面、建筑物和墻壁表面。電磁波在不同性質(zhì)的介質(zhì)交界處,會有一部分發(fā)
55、生反射,一部分通過。反射波和傳輸波的電場強(qiáng)度取決于菲涅爾(Fresnel)反射系數(shù)。反射系數(shù)為材料的函數(shù),并與入射波的極性、入射角和頻率有關(guān)。繞射發(fā)生在當(dāng)接收機(jī)和發(fā)射機(jī)之間的無線路徑被尖利的邊緣阻擋時。山阻擋表面產(chǎn)生的二次波散步于空間,包括阻擋體的背面。在高頻波段,繞射與反射一樣,依賴于物體的形狀,以及繞射點處入</p><p> 跟無線鏈路一樣,對蜂窩無線系統(tǒng)的性能分析使用仿真建模時很有效的,這是由于在時間和
56、空間上對大量的隨機(jī)事件進(jìn)行建模非常困難。這些隨機(jī)事件包括用戶的位置、系統(tǒng)中同時通信的用戶個數(shù)、傳播條件、每個用戶的干擾和功率級的設(shè)置(power level setting)、每個用戶的話務(wù)量需求等,這些因素共同作用,對系統(tǒng)中的一個典型用戶的總的性能產(chǎn)生影響。前面提到的變量僅僅是任一時刻決定系統(tǒng)中的某個用戶瞬態(tài)性能的許多關(guān)鍵物理參數(shù)中的一小部分。蜂窩無線系統(tǒng)指的是,在地理上的服務(wù)區(qū)域內(nèi),移動用戶和基站的全體,而不是將一個用戶連接到一個基
57、站的單個鏈路。為了設(shè)計特定大的系統(tǒng)級性能,比如某個用戶在整個系統(tǒng)中得到滿意服務(wù)的可能性,就得考慮在覆蓋區(qū)域內(nèi)同時使用系統(tǒng)的多個用戶所帶來的復(fù)雜性。因此,需要仿真來考慮多個用戶對基站和移動臺之間任何一條鏈路所產(chǎn)生的影響。</p><p> 鏈路性能是一個小尺度現(xiàn)象,它處理的是小的局部區(qū)域內(nèi)或者短的時間間隔內(nèi)信道的順時變化,這種情況下可假設(shè)平均接收功率不變。在設(shè)計差錯控制碼、均衡器和其他用來消除信道所產(chǎn)生的瞬時影響
58、的部件時,這種假設(shè)時合理的。但是,在大量用戶分布在一個廣闊的地理范圍內(nèi)時,為了確定整個系統(tǒng)的性能,有必要引入大尺度效應(yīng)進(jìn)行分析,比如在大的距離范圍內(nèi)考慮單個用戶受到的干擾和信號電平的統(tǒng)計行為時,忽略瞬時信道特征。我們可以將鏈路級仿真看作通信系統(tǒng)性能的微調(diào),而將系統(tǒng)級仿真看作時整體質(zhì)量水平粗略但很重要的近似,任何用戶在任何時候都可預(yù)計達(dá)到這個水平。</p><p><b> 2蜂窩無線系統(tǒng)</b&
59、gt;</p><p><b> 系統(tǒng)級描述:</b></p><p> 如圖2-1所示,通過把地理區(qū)域分成一個個稱為小區(qū)的部分,蜂窩系統(tǒng)可以在這個區(qū)域內(nèi)提供無線覆蓋。根據(jù)服務(wù)區(qū)域的大小,蜂窩移動通信系統(tǒng)中的小區(qū)通??煞譃?類:微微小區(qū)(picocell)、微小區(qū)(microcell)、宏小區(qū)(macrocell)、衛(wèi)星波束(satellitebeam).這就是所
60、謂的分層蜂窩移動通信系統(tǒng),和傳統(tǒng)的單層蜂窩移動通信相比較,當(dāng)服務(wù)區(qū)域面積相同時,分層蜂窩移動通信系統(tǒng)可以提供更高的系統(tǒng)容量。它的基本覆蓋準(zhǔn)則是較低層的面積較小的小區(qū)層覆蓋用戶密度相對較高的服務(wù)區(qū)域,以獲得較大的系統(tǒng)容量;較高層的面積較大的小區(qū)層用于實現(xiàn)較大區(qū)域(其用戶密度相對較低)的連續(xù)覆蓋并為前者提供溢出冗余信道。此外,為了避免頻繁的小區(qū)間切換,保證不同移動特性的移動臺的通信質(zhì)量要求,在分層蜂窩移動通信系統(tǒng)中,通常移動速度較快的移動臺
61、由較高層的小區(qū)覆蓋層提供服務(wù),移動速度較慢的移動臺則分配到較低的小區(qū)覆蓋層內(nèi)。把可用的頻譜也分成很多信道,每個小區(qū)分配一組信道,每個小區(qū)中的基站都配備了可以同移動用戶進(jìn)行通信的無線調(diào)制解調(diào)器。從基站到移動臺這個發(fā)送方向使用的射頻信道稱為前向信道,而從移動臺到基站這個發(fā)</p><p> 圖2-1 蜂窩通信系統(tǒng)的基本結(jié)構(gòu)</p><p> 高容量的蜂窩系統(tǒng)在小區(qū)間進(jìn)行頻率復(fù)用,同頻小區(qū)(
62、共用相同頻率的小區(qū))之間要離開足夠的距離以減輕同頻干擾。如圖2-2所示,N個小區(qū)構(gòu)成一個簇(cluster,又叫“區(qū)群”),覆蓋地理上的服務(wù)區(qū),以實現(xiàn)信道復(fù)用,N是簇的大小。</p><p> 把服務(wù)區(qū)內(nèi)可用的無線頻譜都分配給每一個簇,使同一個簇內(nèi)的小區(qū)不共用相同的信道。如果服務(wù)區(qū)內(nèi)的可用頻譜由M個信道構(gòu)成,用戶均勻分布在服務(wù)區(qū)內(nèi),則每個小區(qū)可以分得M/N個信道。因為簇在服務(wù)區(qū)內(nèi)復(fù)制,復(fù)用信道將導(dǎo)致同頻小區(qū)的層
63、狀結(jié)構(gòu)(tier)。同頻基站和移動臺之間的射頻能量傳播,會引起同頻干擾。例如,如果一個移動臺同時接收來自本地小區(qū)基站的信號和鄰近層的同頻小區(qū)基站產(chǎn)生的信號,就會產(chǎn)生同頻干擾。本例中,其中一個同頻前向鏈路信號(基站到移動臺的傳輸)是我們的有用信號,移動臺接收到的其他同頻信號就構(gòu)成了對接機(jī)的同頻干擾,同頻干擾的功率級與同頻小區(qū)之間的分隔距離密切相關(guān)。如果小區(qū)建模為如圖2-2所示的六邊形。兩個同頻小區(qū)中心之間的最小距離(叫做復(fù)用距離)等于&l
64、t;/p><p><b> ?。?-1)</b></p><p> 式中R式小區(qū)的最大半徑(這個六邊形內(nèi)接在半徑為R的圓中)。因此,我們馬上可以從圖2-2看出,小簇(小復(fù)用距離)會引起同頻小區(qū)間的大干擾。</p><p> 圖2-2 小區(qū)簇:三小區(qū)復(fù)用模式的描述</p><p> 在一個指定小區(qū)中接收到的同頻干擾的電平
65、,還取決于任一時刻活躍的同頻小區(qū)的數(shù)量。如前所述,在我們感興趣的那個特定小區(qū)周圍,同頻小區(qū)組成一個個的層。在一個給定層中,同頻小區(qū)的數(shù)量取決于層的階次和用來表示小區(qū)的幾何形狀(如一個基站覆蓋的面積)。對于典型的六邊形,最近的同頻小區(qū)在第一層,有六個同頻小區(qū),第二層有12個,第三層有18個,以此類推。在蜂窩無線電出現(xiàn)之前,移動無線電話服務(wù)只能由大功率的發(fā)送器和接收器來提供。一個典型的的系統(tǒng)可以支持25個信道,有效半徑約80Km。增加系統(tǒng)容
66、量的方法是使用覆蓋半徑較小的低功率系統(tǒng),并使用大量的發(fā)送器和接收器。蜂窩網(wǎng)絡(luò)的基礎(chǔ)在于它使用了多個低功率發(fā)送器,數(shù)量級在100W以下。因為這樣的發(fā)送器所能達(dá)到的覆蓋范圍很小,可以將一個區(qū)域劃分為很多蜂窩,各個蜂窩由自己的天線提供服務(wù),每個蜂窩都分配有一個頻帶,并有一個基站提供服務(wù),這個基站由發(fā)送器,接收器和控制單元組成。為了避免干擾或串音,相鄰的蜂窩指派的頻率各不相同。通常,每個蜂窩的基站的傳輸功率被小心的控制著,以允許蜂窩內(nèi)的通信可以
67、使用給定的頻率,同時又要限制該頻率的功率逃逸到鄰近蜂窩。這樣做的目的是使鄰近蜂窩中</p><p> 人們認(rèn)識到同頻干擾時制約無線通信系統(tǒng)的容量和鏈路質(zhì)量的主要因素之一。在系統(tǒng)容量(大尺度系統(tǒng)問題)和鏈路質(zhì)量(小尺度系統(tǒng)問題)之間作折中時,它起到舉足輕重的作用。例如,在不增加分配給系統(tǒng)的無線頻譜帶寬的前提下,得到高容量(大量的用戶)的一種措施是,通過減小蜂窩系統(tǒng)簇的大小N,來縮短信道復(fù)用距離。然而,減少簇大小又
68、增加了同頻干擾,這會降低鏈路質(zhì)量。</p><p> 在AWGN信道中,衡量物理層性能的指標(biāo)主要是錯誤率(誤碼率或誤比特率);而在衰落信道中,陰影和多徑衰落使接受信號的功率隨著空間和時間隨機(jī)變化,使得信噪比是一個隨機(jī)變量。在任何網(wǎng)絡(luò)模式中無論采取哪種調(diào)制方式,錯誤率均與載干噪比成反比關(guān)系,和錯誤率與載噪比成反比例關(guān)系一樣,是由系統(tǒng)的物理特性決定的,與網(wǎng)絡(luò)架構(gòu)、調(diào)制方式、關(guān)鍵技術(shù)等均不相關(guān)。在無線通信系統(tǒng)中,干擾
69、帶來直接的影響主要表現(xiàn)為無線通信系統(tǒng)的誤碼增加、信噪比下降、話音質(zhì)量下降、數(shù)據(jù)傳輸差錯增加、服務(wù)質(zhì)量惡化。干擾嚴(yán)重時甚至導(dǎo)致系統(tǒng)接收機(jī)將因飽和而無法工作,使無線信道由于干擾電平達(dá)到門限值而阻塞,即強(qiáng)信號阻塞,引起頻譜資源的浪費??刂菩诺郎系母蓴_則會導(dǎo)致數(shù)字信道發(fā)送上的錯誤,從而造成呼叫遺漏或阻塞。話音信道上的干擾會導(dǎo)致串話,使用戶聽到了背景的干擾,由于干擾屏蔽了低電平的載波信號,造成了話音質(zhì)量的下降,使用戶感到背景噪音大,通話過程中經(jīng)常
70、有斷續(xù)感,同時,干擾時增加容量的一個瓶頸,而且常常會導(dǎo)致掉話。蜂窩系統(tǒng)中的干擾電平在任何時候都是隨機(jī)的,必須通過對蜂窩之間的射頻傳播環(huán)境和移動用戶的位置進(jìn)行建模才能仿真。另外,每個用戶話務(wù)量的統(tǒng)計特性</p><p> 同頻干擾的影響可以用通信鏈路的信干比(SIR)來估計,這里信干比定義為有用信號的功率S與總干擾信號的功率I之比。由于無線傳播影響,用戶移動性以及話務(wù)量的變化,功率級S和I都是隨機(jī)變量,SIR也是
71、一個隨機(jī)變量。因此,同頻干擾對系統(tǒng)性能產(chǎn)生影響的嚴(yán)重程度,通常用系統(tǒng)的中斷概率來進(jìn)行分析。在這個特定場合下,中斷概率定義為SIR低于給定閾值的概率,即</p><p><b> ?。?-2)</b></p><p> 其中 是SIR的概率密度函數(shù)。要注意鏈路中斷概率和系統(tǒng)中斷概率之間的區(qū)別,前者是根據(jù)可接受的聲音性能所需的特定誤比特率(BER)或者Eb/
72、N0閾值,確定是否為中斷,而后者考慮的是一個典型用戶可接受的移動性能所需的SIR閾值。</p><p> 如前所述,用來估計蜂窩系統(tǒng)中斷概率的解析方法,需要已知射頻傳播影響、用戶移動性和話務(wù)量變化等隨機(jī)量的易于處理的模型,以求得 的解析表達(dá)式。然而,由于這些影響和接受信號電平間的復(fù)雜關(guān)系,很難對這些影響采用解析模型。因此,主要靠仿真來估計蜂窩系統(tǒng)的中斷概率,仿真還為分析提供了靈活性。本章我們給出了
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 通信工程外文翻譯---蜂窩無線通信系統(tǒng)的仿真
- 蜂窩無線通信系統(tǒng)的研究
- 無線通信外文翻譯
- [雙語翻譯]--外文翻譯--基站端無窮天線的非協(xié)作蜂窩無線通信
- 無線通信外文翻譯.doc
- 通信工程專業(yè)英文翻譯--蜂窩無線通信系統(tǒng)的仿真
- [雙語翻譯]--外文翻譯--基站端無窮天線的非協(xié)作蜂窩無線通信(譯文)
- 2010年--外文翻譯--基站端無窮天線的非協(xié)作蜂窩無線通信
- 2010年--外文翻譯--基站端無窮天線的非協(xié)作蜂窩無線通信
- 2010年--外文翻譯--基站端無窮天線的非協(xié)作蜂窩無線通信(譯文)
- 2010年--外文翻譯--基站端無窮天線的非協(xié)作蜂窩無線通信(英文)
- 無線通信畢業(yè)設(shè)計外文翻譯
- 2010年--外文翻譯--基站端無窮天線的非協(xié)作蜂窩無線通信(譯文).docx
- 2010年--外文翻譯--基站端無窮天線的非協(xié)作蜂窩無線通信(英文).pdf
- 2010年--外文翻譯--基站端無窮天線的非協(xié)作蜂窩無線通信(譯文).docx
- 2010年--外文翻譯--基站端無窮天線的非協(xié)作蜂窩無線通信(英文).pdf
- 蜂窩無線通信網(wǎng)絡(luò)呼叫允許控制研究.pdf
- 一個簡單的蜂窩無線通信系統(tǒng)建模與仿真
- 有線-無線通信系統(tǒng)
- 5g無線通信網(wǎng)絡(luò)的蜂窩結(jié)構(gòu)和關(guān)鍵技術(shù)-畢業(yè)論文外文翻譯
評論
0/150
提交評論