版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、<p> 附錄 相關文獻原文及譯文</p><p><b> 英文原文:</b></p><p> Fine-grained galena and sphalerite flotation flocculation</p><p><b> Abstract:</b></p><p&
2、gt; In this paper, the formation of floc in the conduct of fine-grained galena and sphalerite flotation, flocculation and flotation that. By potassium amyl xanthate and kinetic energy change caused by the hydrophobic fl
3、occulation of mineral to form floc. The study is the monomer-20μm trace minerals flotation and floc size determination. Of pH, potassium amyl xanthate (PAX) concentrations, kerosene dosage and mixing intensity and other
4、parameters on the flocculation Flotation. The results show that t</p><p> Keywords:Sulfide minerals Fine dressing Flocculation Foam flotation</p><p><b> Summary:</b></p>
5、<p> Froth flotation ore only a narrow particle size fraction is more effective on the other flotation of ore particle size fraction effect is greatly reduced (Gaudin, et al, 1931; Colins and Jamesion, 1976; Arbi
6、ter, 1979). The effective grain size with the flotation of mineral types and pharmaceutical systems change, for example, the effective flotation of galena grain size for the 6-70μm, sphalerite for the 8-90μm, chalcopyrit
7、e for the 15-60μm, yellow iron ore for the 20-150μm (Trahar and Warren, 1</p><p> There are two difficulties to improve the flotation of fine mineral methods: the particle size increased flotation and reduc
8、ing bubble size. The former is by selective flotation particles together, then formed floc flotation of fine particles, the law shall flocculation flotation. The latter is represented by the vacuum flotation and electrol
9、ytic flotation. In the flocculation flotation, flocculation interactions instead of fine particles and bubbles, fine particles and air bubbles to avoid the </p><p> Fig 1: basis of selective hydrophobic flo
10、cculation flotation diagram. Arrows indicate the composition of the process of flocculation-flotation method</p><p> Flocculation and carrier flotation flotation has long used the shear flocculation flot
11、ation. Carrier through hydrophobic flocculation flotation to fine particles adhesion on the basis of coarse particles, and coarse particle flotation. For example, the use of coarse particles as carrier, tall oil and fuel
12、 oil for flotation, Flotation of anatase from kaolin effect has been greatly improved (Seeton, 1961; Greene and Duke, 1962). Another example is coarse-grained hematite and hematite mineral mud s</p><p> Rey
13、 de Plata ore samples collected from Mexico, Guerrero, Rey de Plata Mine. Which contains 340g/tAg, 1.3g/tAu, 2.49% Pb, 10.1% Zn and 0.49% Cu. Useful minerals well-galena, sphalerite and chalcopyrite, associated with silv
14、er and gold. Some useful minerals were embedded in fine cloth, so they need finely ground to produce a large number of fine particles.</p><p> Single mineral tests used in the potassium amyl xanthate (PAX)
15、from Mexico, Quimica industrial companies, and in our laboratory for purification. From JTBarker of analytical pure hydrochloric acid and sodium hydroxide for adjusting pH. Kerosene from Fisher Scientific without further
16、 purification, using ultrasonic processing, are used emulsion. The pH adjusting agent from JTBarker lime, ZnSO4, Na2SO3, inhibitors NaCN, and were analytically pure CuSO4 activator for the Rey de Plata ore trial. CYTE<
17、;/p><p> 1.2 Method1.2.1 Hydrophobic flocculationHydrophobic flocculation of fine mineral test is diameter 10cm, width 2cm 4 baffle mixing tank conducted. Stirring shaft equipped with a width of 6cm, height
18、 2cm of the S-shaped impeller. 1g 100ml water mineral and suspension pH values adjusted with hydrochloric acid or sodium hydroxide, and then a strong presence in the PAX mixing, is sometimes added to kerosene emulsion. T
19、hen, the suspension transferred to the particle size analyzer for particle size </p><p> 1.2.2Micro-flotationDispersion or flocculation flotation pulp of trace nitrogen in the dark into the tube for flota
20、tion Hallimond. Mineral suspension was transferred to the flotation tube first, and then diluted to 130ml. Then, with the rate of bubbling nitrogen 29.2ml/min, flotation 1min. Float float and not be filtered and dry, res
21、pectively. According to float the weight of the product divided by the total weight of the two parts to measure the effect of floating minerals.</p><p> 1.2.3 ReydePlata ore flocculation-flotation Rey de
22、Plata ore flocculation and flotation as shown in Figure 2. Ore zinc sulfate, sodium sulfide and sodium cyanide (inhibition of sphalerite and pyrite) in the ball mill grinding. Then the pulp with lime to pH value adjusted
23、 to 8.5, and then add Aerophine241, Aerophine3148 and kerosene mixed in the tank speed 900r/min strong stirring 15min, then add foaming agent Teuton-100 for roughing. Crude concentrate, without adding any pharmaceutical
24、under t</p><p> Figure 2: Rey de Plata ore flocculation flotation</p><p> 1.2.4Floc size determination In the study, with a semiconductor laser light source with Shimandzu SALD-1100 laser
25、diffraction particle size analyzer dispersed mineral particles and flocculation of the mineral particle size distribution. This instrument measured the optical diameter, rather than the equivalent Stokes diameter. In ord
26、er to prevent floc destruction in the measurement, the measurements without ultrasonic treatment suspension.</p><p> 1.2.5 Contact angle measurements With a Rame-Hart NRL-100-00-type angle was determined
27、by measuring the size of the contact angle, the measurement of the details described in the past have been reported (Song, et al, 2000).</p><p> 2 Results and discussion2.1Flocculation of fine mineral flot
28、ation</p><p> 2.1.1 PH Flocculation of galena and sphalerite for flotation with PAK floatability when the relationship with pH shown in Figure 3. Pharmacy same ore system in the same conditions, by conve
29、ntional methods galena and sphalerite flotation results also indicated that in the diagram. In conventional flotation, suspension, transfer to Hallimond in the flotation tube just prior to mixing with a magnetic stirrer
30、with PAX to moderate stirring. The results showed that the flotation of fine hydrophobic</p><p> Figure 3: PAX as collector with the flocculation of galena (A) and sphalerite (B)the floatability of the
31、relationship with pHConventional mineral flotation results indicated in the figure</p><p> 2.1.2 amyl xanthate (PAX) concentration Figure 4 shows the PAX concentration on the flocculation of fine gale
32、na and sphalerite flotation effect. Thus, with the PAX concentration increased galena, sphalerite recovery rate will increase until the PAX concentration reached 2 × 10-3mol / l (galena), 1 × 10-2mol / l (flash
33、 zinc). In PAX low concentrations, the recovery rate of increase of mineral medium, but when more than the critical PAX concentration (1 × 10-5mol / l (galena), 1 × 10-4mol / l (s</p><p> Figure 4
34、: The flocculation of galena and sphalerite floatability of the relationship between concentration and PAX</p><p> 2.1.3 amount of kerosene PAX caused by the fine galena and sphalerite in the floccul
35、ation of recovery and kerosene consumption relationship shown in Figure 5. Can be seen from the figure, when the increase in kerosene consumption, galena and sphalerite floatability also increased, until the amount of ke
36、rosene, respectively, 200mg / l and 250mg / l. Operating conditions in the figure, there is no time to add kerosene, galena and sphalerite flocculation flotation recoveries were 64% and 67%. Obv</p><p> Fig
37、ure 5: PAX cause flocculation of fine-grained galena and sphalerite floatability of the relationship between consumption and kerosene</p><p> Flocculation and flotation of non-polar oil on the improvem
38、ent may be due to floc size and density increase, and the floc and the bubbles increase the adsorption strength. Water suspension of non-polar oil is always absorption in the hydrophobic particles, and then form a film.
39、Film can increase the hydrophobic particles, particles in the reunion will be bridged together. Oil bridging flocculation greatly enhanced hydrophobic adsorption strength of particles (or floc strength), leading to flocc
40、u</p><p> 2.1.4 mixing strength As previously mentioned, the slurry mixing machine on a change from the hydrophobic particles of kinetic energy to overcome the energy barrier to particles close to the hyd
41、rophobic flocculation occurred. Figure 6 indicated that the flocculation caused by the PAX grained galena and sphalerite floatability of phase with the hydrophobic flocculation stirring rate (or mixing intensity) relatio
42、nship. Can be seen from the figure, mineral recovery increased with the increase of </p><p> Figure 6: PAX cause flocculation of fine-grained galena and sphalerite recovery of hydrophobic flocculation
43、and mixing section of the relationship between speed</p><p> 2.1.5 floc size influence Figure 7, the flocculation caused by the PAX grained galena and sphalerite floatability of the relationship betw
44、een the diameter and flocculation. When the floc hydrophobic constant, the hydrophobic flocculation by changing the phase of the agitation speed to adjust the floc particle size. This shows that the recovery rate is clos
45、ely related with the floc size. As the floc diameter increases, the floatability of floc also increased, up to 38μm galena or sphalerite gra</p><p> Figure 7: PAX cause flocculation of fine-grained galena a
46、nd sphalerite recovery rate and the average size of the relationship between floc</p><p> 2.2 Rey de Plata ore flocculation flotation In order to reduce the loss of fine mineral particles, to improve
47、gold, silver, lead, zinc and copper recovery, the Rey de Plata ore flocculation flotation tests carried out. Galena and sphalerite, respectively, the other pilot. Thio-phosphate and kerosene with a hydrophobic flocculati
48、on of galena, chalcopyrite also entered floc, the use of zinc sulfate, sodium sulfite and sodium cyanide inhibition of sphalerite, galena and sphalerite to separation. </p><p> Table 1: Rey de Plata ore flo
49、tation and conventional flotation results of flocculation</p><p> Test conditions:1), grinding stage: 1300g/tZnSO4, 500g/tNa2SO3, 130g/tNaCN, slurry particle size 87.5%-37μm.</p><p> 2)
50、, shallow flotation cycle: in the conventional flotation time, pH value of 8.5 (adjusted with lime), 6g/tAerophine241, 9g/tAerophine3418, pulp in the flotation machine mixing time 2min. When the flocculation flotation, p
51、H value of 8.5 (adjusted with lime), 6g/tAerrofloat-241, 9g/tAperofloat-3418, 200g / t of kerosene in the tank mixture stirred 15min (stirring speed 900r/min). Add 6g/tTeuton-100 foaming agent, roughing 5min, no increase
52、 in the pharmaceutical, the selection I choose 4min, featu</p><p> 3), zinc flotation circuits: conventional flotation at the time, 700g/tCuSO4, pH value of 10.5 (adjusted with lime), 22g/tX-350, pulp in th
53、e flotation machine mixing time 2min. When the flocculation flotation, 700g/tCuSO4, pH value of 10.5 (adjusted with lime), 22g/tX-350, in a mixed tank mixing 15min (stirring speed 900r/min). Add 35g/tTeuton-100 foaming a
54、gent, roughing 7.5min; pH adjusted with lime to 11, selected I choose 5min, select the election II 3min, selected III election 3min.</p><p> As can be seen from Table 1, compared with conventional flotation
55、, Rey de Plata ore flocculation-flotation better. First, the flocculation flotation tailings useful components than conventional flotation of low grade, reducing the useful minerals in tailings loss. Money, and zinc crud
56、e select gold, silver, lead, zinc and copper loss rate decreased by 6.6%, 3.4%, 1.6%, 5.2% and 4.2%, making recovery more useful minerals. Second, the flocculation flotation stage in the fossil Featured greatly impr</
57、p><p> Figure 8: Rey de Plata ore flocculation flotation and conventional flotation of lead in lead concentrate grade and recovery of the relationship between lead</p><p> Figure 9: Rey de Plat
58、a ore flocculation flotation and conventional flotation of zinc in zinc concentrate grade and recovery of the relationship between zinc</p><p> From Figure 8 and Figure 9 shows that, with the Rey de Plata
59、 ore in the test, flocculation flotation of lead and zinc concentrates at lead and zinc concentrate by conventional flotation than the high grade. These data are from the selected roughing and 3 received. Can see from Fi
60、gure 2, flocculation flotation of the curve at the right side of the curve of conventional flotation, flocculation and flotation that receive the same grade but the recovery rate is higher than conventional flotation con
61、</p><p> 2), can be greatly improved by adding a small amount of kerosene flotation flocculation effect, not only because of enhanced hydrophobic flocculation, but also because of flocculation increases the
62、 probability of adsorption to the bubble. In this process, kerosene can be replaced by a large number of PAX, and thus reduce the production cost.</p><p> 3), Rey de Plata ore flotation showed flocculation,
63、 flocculation flotation not only reduces the useful minerals in the tailings of the loss and to improve the recovery of fine mineral particles helpful and useful minerals in the flotation by increasing the speed greatly
64、improved the selection of separation efficiency. Can be seen that flocculation is disseminated ore flotation recovery of galena and sphalerite effective and feasible method.</p><p><b> 中文翻譯:</b>
65、</p><p> 細粒方鉛礦和閃鋅礦的絮凝浮選</p><p><b> 摘 要 :</b></p><p> 本文研究了在形成絮團的情況下進行細粒方鉛礦和閃鋅礦浮選,即絮凝浮選法。通過戊基鉀黃藥和動能變化引起礦物的疏水絮凝,從而形成絮團。該研究是用-20μm的單體礦物進行微量浮選和絮團粒度的測定。研究了pH值、戊基鉀黃藥(PAX)的濃
66、度、煤油用量和攪拌強度等參數(shù)對絮凝浮選的影響。結果表明, 絮團粒度對絮凝浮選的效果影響很大。在適當?shù)牟僮鳁l件下,方鉛礦和閃鋅礦的絮凝浮選回收率可達到100%,而常規(guī)浮選的回收率只有40%。試驗還發(fā)現(xiàn),加入少量的煤油可改進浮選指標,大大降低PAX的用量。還用墨西哥ReydePlata細粒浸染硫化礦(含鉛、鋅、銀金和銅)進行了絮凝浮選試驗。試驗結果表明,不僅降低了尾礦中有用金屬的損失,而且精選效率也得到了很大的提高,精礦品位和回收率均比常規(guī)
67、浮選高得多。前者可能是由于細粒有用礦物回收率高,后者可能是由于絮團形成和煤油的添加使有用礦物浮選速度加快。</p><p> 關鍵詞 :硫化礦 細粒選礦 絮凝作用 泡沫浮選 </p><p><b> 概 述:</b></p><p> 泡沫浮選只對窄粒級礦粒比較有效,對其他粒級礦粒的浮選效果卻大大降低(Gaudin,et al,193
68、1;Colins and Jamesion,1976;Arbiter,1979)。浮選的有效粒級隨礦物種類和藥劑制度的變化而變化,例如,方鉛礦的有效浮選粒級為6-70μm,閃鋅礦為8-90μm,黃銅礦為15-60μm,黃鐵礦為20-150μm(Trahar and Warren,1976)。通常認為,細粒礦物難以浮選主要是由于質量小和比表面積大,導致礦粒與氣泡碰撞和粘附機率小。但是,如礦粒表面組成、氧化、礦物學組成和可溶離子的濃度等其它
69、因素也會影響細粒礦物的浮選(Somasundaran,1980)。</p><p> 有兩種改善細粒礦物難浮選的方法:即增大浮選顆粒的粒度和減小氣泡的大小。前者是通過浮選顆粒選擇性聚集,然后對形成絮團的細顆粒進行浮選,該法即為絮凝浮選。后者的代表是真空浮選和電解浮選。在絮凝浮選中,絮團代替細顆粒與氣泡相互作用,避免了細顆粒與氣泡碰撞和粘附機率小的問題。這些絮團通常通過疏水絮凝形成,可導致礦粒的疏水作用和動能的改
70、變(Xu and Yoon,1989;Warren,1992;Song and Lu,1994;Lu,et al,1999)。與電解質凝結體和聚合物絮凝體比較,疏水絮團更適合泡沫浮選,因為它們具有疏水表面、結構更致密、絮凝強度更大。以細粒礦物選擇性疏水絮凝作用為基礎的絮凝浮選如圖1所示。絮凝浮選法的核心是細粒礦物的選擇性疏水絮凝作用,包括分散、選擇性疏水化和疏水絮團的形成。添加混有pH調(diào)整劑的特效分散劑可起到分散作用,防止細粒礦物凝結,
71、從而降低礦物的分離效率。除天然疏水性礦物外,選擇性疏水化一般都是通過捕收劑吸附在浮選的顆粒上而形成的。疏水絮團是靠機械攪拌形成的,通過向疏水的礦粒輸入動能,克服能量障礙而形成。疏水絮凝主要取決于顆粒的疏水程度,添加非極性油(Cape</p><p> 圖1:以選擇性疏水為基礎的絮團浮選法示意圖。箭頭表示組成絮團浮選法的過程</p><p> 絮凝浮選早已用于載體浮選和剪切絮凝浮選中。載
72、體浮選是通過疏水絮凝作用使細顆粒粘附于粗顆粒為基礎,然后浮選粗顆粒。例如,用粗顆粒作載體,塔爾油和燃油作捕收劑,從高嶺土中浮選anatase的效果得到很大的提高(Seeton,1961;Greene and Duke,1962)。另一個例子是,赤鐵礦礦泥與粗粒赤鐵礦可用油酸鈉和煤油作捕收劑來分離(Cristoveanu and Meech,1985)。剪切絮凝浮選第一次用于細粒浸染的白鎢礦礦石浮選試驗中(Koh and Warren,1
73、977),細粒白鎢礦的絮凝是由于油酸離子的吸附和強剪切力的應用所引起。這種方法已成功用于瑞典Yxjoberg白鎢礦選礦廠的工業(yè)生產(chǎn)中,用脂肪酸作捕收劑(Grasburg and Mattson,1979)。絮凝浮選不僅用于細粒選礦中,而且還用于洗煤試驗中(Song and Lopez-Valdivieso,1998)。為了降低絮凝浮選過程中的高能耗,Song和Trass(1997)建議把疏水絮凝在離心磨機中進行,以減少攪拌桶臺數(shù)。<
74、;/p><p> 雖然已有大量關于細顆粒絮凝浮選的報導,但是只有少數(shù)的研究人員在研究疏水絮凝作用和金屬硫化礦物的絮凝浮選。我們以前的論文(Song ,et al,2000,2001)已報道了方鉛礦和閃鋅礦的疏水絮凝。也已發(fā)現(xiàn),通過動能變化,戊基黃藥(短烴鏈捕收劑)能引起細顆粒強烈的疏水絮凝,加入少量的非極性油也可強烈的提高疏水絮凝的效果。絮凝的細顆粒的粒度范圍與常規(guī)浮選的有效粒度差不多。在研究中,我們研究了當用戊基
75、黃藥作為捕收劑時方鉛礦和閃鋅礦絮凝浮選的特性。其目的是研究絮凝浮選用于方鉛礦和閃鋅礦選礦中的可行性,以及絮凝浮選與各種參數(shù)關系,如絮團粒度、pH值、戊基黃藥的濃度、煤油用量和攪拌強度。此外,還想將絮凝浮選用于墨西哥的Rey de Plata礦石(金屬硫化礦)。</p><p><b> 1 試 驗</b></p><p> 1、1 材 料 </p&g
76、t;<p> 單體方鉛礦和閃鋅礦采自墨西哥Chihuahua的Naica礦山。塊礦先用手錘破碎,然后手選提純。先用振動磨機細磨,然后用重力沉降法獲得粒度為-20μm的細粒方鉛礦和閃鋅礦,該粒級產(chǎn)品用于進行絮凝和絮凝浮選研究。用Shimadzu SALD-1100測定它們的分散度,然后進行粒度分析,測定表明,方鉛礦d50和d80的粒級分別為4.4μm和12.8μm,閃鋅礦d50和d80的粒級分別為2.5μm和9.7μm。試
77、驗得方鉛礦中含98.2%的PbS,閃鋅礦中含93.4%的ZnS。</p><p> Rey de Plata礦樣采自墨西哥Guerrero的Rey de Plata礦山。其中含340g/tAg,1.3g/tAu、2.49%Pb、10.1%Zn和0.49%Cu。有用礦物有方鉛礦、閃鋅礦和黃銅礦,伴生有銀和金。部分有用礦物呈細粒嵌布,所以需要細磨,產(chǎn)生大量細顆粒。</p><p> 單礦物
78、試驗中所用的戊基鉀黃藥(PAX)來自墨西哥的Quimica工業(yè)公司, 并在我們實驗室中進行提純。取自J.T.Barker的分析純鹽酸和氫氧化鈉用于調(diào)節(jié)pH值。取自Fisher Scientific的煤油未進一步提純,用超聲波進行處理,得到乳狀液使用。取自J.T.Barker的pH調(diào)整劑石灰、ZnSO4、Na2SO3、抑制劑NaCN 、和活化劑CuSO4均為分析純,用于Rey de Plata礦石試驗中。 由CYTEC工業(yè)公司提供捕收劑A
79、erophine242和Aerophine3418(二硫代磷酸鹽),由墨西哥的Quimica工業(yè)公司提供捕收劑X-350(黃藥)和起泡劑Teuton-100。單礦物試驗用的水先經(jīng)過蒸餾,然后用樹脂和0.2μm孔洞的過濾器進行處理,其剩余電導率低于1μS/cm。在Rey de Plata礦石試驗中,用的是蒸餾水。</p><p><b> 1、2 方 法</b></p><
80、;p> 1、2、1 疏水絮凝</p><p> 細粒礦物的疏水絮凝試驗是在直徑為10cm,寬度為2cm的4擋板混合槽內(nèi)進行的。攪拌軸上安裝有寬度為6cm,高度為2cm的S形葉輪。1g礦物和100ml水的懸浮液的pH值用鹽酸或氫氧化鈉調(diào)節(jié),然后在PAX存在時強烈攪拌,有時加入煤油乳濁液。然后,將懸浮液轉移到粒度分析儀中測定絮團的粒度,或轉移到Hallimomd浮選管中進行微量浮選。</p>
81、<p> 1、2、2 微量浮選</p><p> 分散或絮凝礦漿的微量浮選在鼓入氮氣的Hallimond浮選管中進行。礦物懸浮液先被轉移到浮選管中,然后稀釋至130ml。接著,以29.2ml/min速度鼓入氮氣,浮選1min。浮起的和未浮起的被分別過濾和干燥。根據(jù)浮起產(chǎn)品的重量除以兩部分的總重量來度量礦物的浮性效果。</p><p> 1、2、3 ReydePlata礦石絮
82、團浮選</p><p> Rey de Plata礦石絮凝浮選根據(jù)圖2所示進行。原礦添加硫酸鋅、硫化鈉和氰化鈉(抑制閃鋅礦和黃鐵礦)在球磨機中磨礦。然后用石灰將礦漿pH值調(diào)至8.5,然后添加Aerophine241、Aerophine3148和煤油在轉速為900r/min的混合槽中強烈攪拌15min,隨后,再添加起泡劑Teuton-100進行粗選。粗精礦在不添加任何藥劑的條件下進行兩次精選,尾礦進入鋅浮選循環(huán)中
83、。鉛、銀和銅礦物富集到鉛精礦中。用石灰將鋅浮選循環(huán)pH值調(diào)至10.5,再添加活化劑硫酸銅、捕收劑X-350和煤油乳濁液在轉速為900r/min的混合槽中強烈攪拌15min。添加起泡劑Teuton-100進行鋅粗選和3次精選。在精選時,礦漿pH值調(diào)至11.5。試驗最終得到1個鉛精礦、1個鋅精礦、2個鉛中礦、3個鋅中礦和1個尾礦。</p><p> 圖2:Rey de Plata礦石絮凝浮選</p>
84、<p> 1、2、4 絮團粒度測定</p><p> 在研究中,用帶有半導體激光光源的Shimandzu SALD-1100型激光衍射粒度分析儀測定分散的礦粒和絮凝的礦粒的粒度分布。這個儀器測定的是光學直徑,而不是等效Stokes直徑。為了防止絮團在測量中被破壞,在測量時不用超聲波處理懸浮液。</p><p> 1、2、5 接觸角測定</p><p>
85、; 用Rame- Hart NRL-100-00型角度測定儀測定接觸角的大小,有關測量詳情描述過去已報道過(Song,et al,2000)。</p><p><b> 2 結果和討論</b></p><p> 2、1 細粒礦物的絮凝浮選</p><p> 2、1、1 pH的影響</p><p> 絮凝方鉛
86、礦和閃鋅礦用PAK作捕收劑時的可浮性與pH關系如圖3所示。同種礦石在藥劑制度相同的條件下,用常規(guī)方法浮選方鉛礦和閃鋅礦的結果也表示在該圖中。在常規(guī)浮選中,懸浮液在轉移到Hallimond浮選管中之前僅與PAX混合用磁力攪拌器進行中等強度攪拌。結果表明,細粒礦物的浮選效率因為疏水絮凝得到很大的改善。在給定的藥劑制度和操作條件下,與常規(guī)浮選相比,當pH值為5-8時,絮凝浮選可使方鉛礦和閃鋅礦的浮選效率分別提高30%和50%。顯然,絮凝浮選是
87、回收細粒方鉛礦和閃鋅礦的有效方法。由圖可知,絮凝浮選效果與pH值的變化與常規(guī)浮選相似。從圖3-A可知,方鉛礦的可浮性隨pH升高均降低。這種降低在堿性范圍內(nèi)比在酸性范圍內(nèi)更明顯。對于絮凝浮選,可浮性在pH值為4和10時相差40%。從圖3-B可知,絮凝浮選在pH4-8之間比較平穩(wěn),在這個范圍之外,礦物可浮性大大降低。這個pH范圍與Fuerstenau報道(1982)的用戊基黃藥作捕收劑時閃鋅礦的最大浮選效率是一致的。 </p>
88、;<p> 圖3:用PAX作捕收劑時絮凝的方鉛礦(A)和閃鋅礦(B)的可浮性與pH的關系,礦物的常規(guī)浮選結果也表示在圖中</p><p> 2、1、2 戊基黃藥(PAX)濃度的影響</p><p> 圖4表明了PAX濃度對絮凝細粒方鉛礦和閃鋅礦浮選的影響。由此可見,隨PAX濃度增大方鉛礦、閃鋅礦的回收率也會升高,直到PAX濃度分別達到2×10-3mol/l(方
89、鉛礦)、 1×10-2mol/l(閃鋅礦)。在PAX低濃度時,礦物回收率增加速度中等,但是當超過臨界PAX濃度(1×10-5mol/l(方鉛礦)、 1×10-4mol/l(閃鋅礦)后,礦物回收率急劇增加。據(jù)Song,et al 報道(2000.2001),這些觀測結果與PAX在礦物表面上的吸附量和礦物表面接觸角大小隨PAX濃度變化是相似的。表明,絮凝浮選與PAX在礦物表面上的吸附密切相關,雖然這些礦物表面疏
90、水。因為顆粒疏水在疏水絮團形成中起著主要作用(Song and Lu,1994;Song,et al,2000),所以絮凝浮選收果隨PAX濃度增加而增強不僅僅是由于絮團疏水程度增強,而且還是由于絮團粒度的增大。</p><p> 圖4:絮凝的方鉛礦和閃鋅礦的可浮性與PAX濃度的關系</p><p> 2、1、3 煤油用量的影響</p><p> 由PAX引起的
91、細粒方鉛礦和閃鋅礦的絮團的回收率與煤油用量關系如圖5所示。從該圖可看出,在煤油用量加大時,方鉛礦和閃鋅礦的可浮性也隨之增大,直到煤油用量分別達到200mg/l和250mg/l。在圖中的操作條件下,沒有添加煤油時,方鉛礦和閃鋅礦的絮凝浮選回收率分別為64%和67%。顯而易見,少量煤油就能顯著提高絮團的可浮性。從圖4和圖5可以發(fā)現(xiàn),煤油可代替一部分PAX。為了用絮凝浮選完全浮選方鉛礦,當不用煤油時,需要用2×10-3mol/l的P
92、AX,若用了200mg/l的煤油,則只需用1×10-4mol/l的PAX。對于閃鋅礦,不用煤油時,需要1×10-2mol/l的PAX,若用了250mg/l的煤油,則只需用5×10-4mol/l的PAX。在是否添加煤油的兩種情況下,方鉛礦所用的PAX減少了384mg/l,閃鋅礦所用的PAX減少了1919mg/l。因為,煤油比PAX更便宜,添加煤油可大大節(jié)省絮凝浮選的費用。</p><p&g
93、t; 圖5: PAX引起絮凝的細粒方鉛礦和閃鋅礦的可浮性與煤油用量的關系</p><p> 非極性油對絮凝浮選的改進可能是由于絮團粒度和密度的增大,以及絮團與氣泡的吸附強度的提高。水懸浮液中的非極性油總是吸附在疏水顆粒上,然后形成油膜。油膜能提高顆粒的疏水性,在團聚時將顆粒橋連起來。油的橋連大大增強了疏水絮團中顆粒的吸附力(或絮團強度),導致絮團在紊流的強作用力下不被破碎(Song,et al,1999)。由
94、于這兩個因素,添加非極性油的能增強疏水絮凝,產(chǎn)生比未加入非極性油更大、更致密的絮團。</p><p> 2、1、4 攪拌強度的影響</p><p> 正如前面所說的,礦漿攪拌能從機械上改變疏水顆粒的動能,從而克服能壘,使顆粒接近,發(fā)生疏水絮凝。圖6表示了由PAX引起的絮凝細粒方鉛礦和閃鋅礦的可浮性與疏水絮凝階段的攪拌速度(或攪拌強度)的關系。從圖中可以看出,礦物回收率隨攪拌強度增大而升
95、高至最大值,然后下降。在給定的操作條件下,方鉛礦在攪拌強度為900r/min時,其回收率最高;閃鋅礦在750r/min時回收率最高。顯然,在疏水絮凝階段,礦漿需要足夠強度的攪拌,才能獲得好的絮凝浮選效果。PAX濃度和煤油的影響與攪拌強度影響不同,攪拌強度影響絮凝浮選通過改變絮團的粒度來實現(xiàn)的。因此,在高攪拌速度范圍內(nèi),由于強剪切和拉力作用,使得可浮性降低。</p><p> 圖6 :PAX引起絮凝的細粒方鉛礦和
96、閃鋅礦的回收率與疏水絮凝段的攪拌速度的關系</p><p> 2、1、5 絮團粒度影響</p><p> 圖7表示了由PAX引起的絮凝細粒方鉛礦和閃鋅礦的可浮性與絮凝直徑的關系。當絮團疏水性保持不變的時,通過改變疏水絮凝階段的攪拌速度來調(diào)節(jié)絮團的粒度。由此可見,回收率與絮團粒度密切相關。隨著絮團直徑的增大,絮團可浮性也增強,直到方鉛礦粒度達到38µm或閃鋅礦粒度達到45
97、81;m后曲線變平。小粒度絮團時,回收率增加幅度很大。但是大于臨界粒度時變化不強烈。方鉛礦的臨界粒度為20µm,閃鋅礦的臨界粒度為24µm,臨界粒度是指在給定的條件下絮團浮選的下限粒度。這些下限粒度比浮選相應礦物的下限粒度更大,這可能是由于絮團密度比較低使得其孔隙度大。正如所料,絮團粒度是影響絮凝浮選的一個重要因素。</p><p> 圖7:PAX引起絮凝的細粒方鉛礦和閃鋅礦的回收率與絮團平
98、均粒度的關系</p><p> 2、2 Rey de Plata礦石絮凝浮選</p><p> 為了降低細礦粒的損失,提高金、銀、鉛、鋅和銅的回收率,對Rey de Plata礦石進行了絮凝浮選試驗。分別對方鉛礦和閃鋅礦進行試驗。用一硫代磷酸鹽和煤油疏水絮凝方鉛礦,黃銅礦也進入絮團中,用硫酸鋅、亞硫酸鈉和氰化鈉抑制閃鋅礦,使方鉛礦和閃鋅礦分離。用黃藥和煤油疏水絮凝閃鋅礦。結果
99、如表1所示。為了比較,用常規(guī)浮選方法,在同樣條件下(浮選藥劑、礦物粒度和浮選方法等)對同樣的礦樣同時進行了浮選,但是不加煤油,不在混合槽中進行強烈的礦漿攪拌。其結果也列在表1中。</p><p> 表1:Rey de Plata礦石絮凝浮選和常規(guī)浮選結果</p><p><b> 試驗條件:</b></p><p> 1)、磨礦階段:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 磨礦對方鉛礦和閃鋅礦浮選行為的影響研究.pdf
- 細粒脆硫銻鉛礦和鐵閃鋅礦的絮團浮選行為及其機制研究.pdf
- 外文翻譯---金屬離子和閃鋅礦存在下的黃鐵礦浮選
- 閃鋅礦中鐵含量對浮選的影響-畢業(yè)論文外文翻譯
- 高堿體系方鉛礦和脆硫銻鉛礦浮選分離研究與應用.pdf
- 黃銅礦和方鉛礦浮選分離的基礎研究.pdf
- 方鉛礦的性質歸納
- 文山鐵閃鋅礦浮選工藝流程研究.pdf
- 低灰細粒煤泥絮凝浮選試驗研究.pdf
- 抑制劑對乙硫氨酯浮選分離黃銅礦和方鉛礦作用機理研究.pdf
- 承德燕山銀業(yè)鉛鋅礦細粒浮選工藝研究.pdf
- 微細粒赤鐵礦絮凝浮選行為及機理研究.pdf
- 異極性巰基浮選捕收劑在方鉛礦表面的吸附行為及機理研究.pdf
- 晶格缺陷對方鉛礦電子結構及浮選行為影響的第一性原理研究.pdf
- 58405.方鉛礦氧化動力學研究
- 彬長細粒煤浮選-絮凝工藝組合試驗研究.pdf
- 黃銅礦和閃鋅礦在浮選分離過程中的微量熱動力學研究.pdf
- 鋅加壓氧化浸出渣中閃鋅礦與單質硫的浮選分離技術研究.pdf
- 高分子絮凝劑對細粒膠磷礦浮選影響研究.pdf
- 菱鋅礦和石英的浮選分離研究.pdf
評論
0/150
提交評論