在工業(yè)化國家的高新技術(shù)產(chǎn)品出口和經(jīng)濟(jì)增長外文翻譯_第1頁
已閱讀1頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p><b>  中文2168字</b></p><p>  本科畢業(yè)論文外文原文</p><p>  外文題目: High-tech exports and economic growth in industrialized countries

2、 </p><p>  出 處: Economics </p><p>  作 者: Martin Falk </p><

3、p><b>  原 文:</b></p><p>  High-tech exports and economic growth in industrialized countries</p><p>  Martin Falk</p><p>  Austrian Institute of Economic Research (WI

4、FO)</p><p><b>  Abstract</b></p><p>  The present article provides new evidence on the impact of the change in the high-tech export share on economic growth in OECD countries. We est

5、imate a dynamic growth model on panel data for 22 OECD countries for 1980–2004, in which the data is measured as 5-year averages. Using the system GMM panel estimator, which corrects for simultaneity, we find that both b

6、usiness R&D intensity and the share of high-tech exports are significantly positively related to the GDP per working age population. The</p><p>  1. Introduction</p><p>  The share of high-t

7、echnology exports in total manufacturing exports has increased considerably in OECD countries throughout the last 25 years. Some OECD countries such as Finland, Ireland, Korea, the Netherlands and the United Kingdom have

8、 increased their high-tech export share more than other countries. Similarly, the change in the ratio of business expenditures on R&D (BERD) to GDP has also unevenly evolved across OECD countries. The differences in

9、the evolution of high-technology export share</p><p>  The related empirical literature agrees that investment in R&D is one of the most significant factors affecting the differences in GDP and productiv

10、ity growth (Bassanini and Scarpetta, 2001).However, the relationship between high-tech exports and economic growth in industrialized countries remains somewhat unclear. Crespo-Cuaresma and Wo¨ rz (2005) found that t

11、he export share of technology-intensive industries is significantly positively related to the GDP per capita only for the sample of non-O</p><p>  The aim of the present article is to provide new insights in

12、to the impact of high-tech exports on economic growth. The growth equation is estimated using the system generalized method of moments (GMM) panel estimator based on panel of 22 OECD countries for the period 1980 to 2004

13、, in which the data are measured as 5-year averages.</p><p>  2. Empirical Model</p><p>  The empirical model is based on the human capital augmented Solow model that was introduced by Mankiw et

14、 al. (MRW) (1992). Nonneman and Vanhoudt (1996) extended the MRW model by adding the ratio of R&D to GDP. We further augment the MRW model by adding a measure of innovation output such as the high-tech export share a

15、s an alternative to R&D intensity. Following Caselli et al. (1996), the steady state level of GDP per capita based on panel data can be described as:</p><p>  where is per capita GDP of the working age

16、population expressed in 1995 purchasing power parities in country i in period t, where is a country specific effect, is a period-specific effect, and it is an error-term. The set of explanatory variables includes the

17、investment ratio, INVit, the ratio of business enterprise R&D expenditures to GDP (BERD), RDGDPit, average years of education in the working age population (from 25 to 64 years of age) taken from Barro and Lee, 2000)

18、, EDUit and the shar</p><p>  We can derive the regression equation by taking first differences in order to remove unobserved time-invariant, country specific effects (for the sake of notational convenience,

19、 x shall comprise the explanatory variables):</p><p>  Assuming the residuals of the level equation are serially uncorrelated, the values of y lagged two periods or more can be used as instruments in the fir

20、st-differenced equation. This implies the following moment condition:</p><p>  In order to deal with the potential endogeneity problem, we assume that the explanatory variables in x are predetermined, rather

21、 than strictly exogenous, implying in turn the following moment conditions:</p><p>  The estimation equation and moment conditions are estimated using the system GMM estimator proposed by Blundell and Bond (

22、1998). This requires following additional level moment conditions:</p><p><b>  And</b></p><p>  3. Estimation Results</p><p>  Table 1 shows the estimation results for t

23、he growth equation using three different specifications. In order to reduce the influence of potential outliers, we exclude data points whose standardized residual falls outside the interval from _2 to 2. This reduces th

24、e sample by seven observations and leaves us with 96 observations.2 In all cases, the Sargan test of over identifying restrictions cannot reject the null hypothesis that the instruments are uncorrelated with the error te

25、rm at the 5% level</p><p>  As was expected, we find that the export share of high-technology industries enters the growth equation with a positive sign and is significant at the 1% level (see specification

26、ii). The short and long-term elasticities of GDP per working age population with regard to the share of high-tech exports are 0.025 and 0.29, respectively.</p><p>  The ratio of business R&D expenditures

27、 to GDP is also significant at the 1% implying that increased R&D activities have a significant positive impact on GDP per capita growth (see specification i). The short and long-term elasticities of business R&D

28、 intensity with regard to GDP are 0.021 and 0.21, respectively. When both variables are included, the coefficient of the share of high-tech exports drop from 0.025 to 0.011, and the R&D coefficient drops from 0.021 t

29、o 0.014 (see specification). Inter</p><p>  Furthermore, the SE of both of the coefficients is enlarged due to collinearity. Therefore, we also provide the Wald-test statistics of joint significance indicati

30、ng that both business R&D intensity and the share of high-tech exports are jointly significant at the 5% level.</p><p>  4. Conclusions</p><p>  The present article provides new evidence of

31、the impact of the share of high-tech exports and business R&D intensity on economic growth. Failure to control for innovation input can cause high-tech exports to pick up their effect, leading to an overestimation of

32、 the impact of the share of high-tech exports. In using the system GMM estimator, which enables us to control for simultaneity bias, we find that both measures of innovation performance are powerful determinants of econo

33、mic growth when ent</p><p>  The results of the present study are important for policy makers, as both business R&D intensity and the share of high-tech exports are one of the main indicators of the Euro

34、pean Innovation Scoreboard (EIS), which is published by the European Commission. Given the results, we suggest that business R&D intensity should be given more weight in the composite summary innovation index that is

35、 published in the EIS.</p><p><b>  Appendix</b></p><p><b>  譯 文:</b></p><p>  在工業(yè)化國家的高新技術(shù)產(chǎn)品出口和經(jīng)濟(jì)增長</p><p>  馬丁.福爾克 奧地利經(jīng)濟(jì)研究所(WIFO)</p>

36、<p><b>  摘 要</b></p><p>  本文為高新技術(shù)出口份額的變化對經(jīng)合組織國家的經(jīng)濟(jì)增長產(chǎn)生影響提供了新的證據(jù)。我們根據(jù)22個經(jīng)合組織國家1980-2004年的數(shù)據(jù)估計出一個動態(tài)的生長模型,該測量數(shù)據(jù)為5年的平均數(shù)。使用修正性的系統(tǒng)廣義距估計方法,我們發(fā)現(xiàn)企業(yè)R&D強度和高新技術(shù)產(chǎn)品出口份額都與工作年齡人口的人均GDP呈現(xiàn)顯著正相關(guān)。被估計的彈性相當(dāng)大,

37、但是幅度上顯示在影響工作年齡人口的人均GDP上,企業(yè)R&D強度比高新技術(shù)產(chǎn)品出口份額的因素更重要。</p><p><b>  引言</b></p><p>  在過去的25年里,經(jīng)合組織國家的高新技術(shù)產(chǎn)品出口份額在整個制造業(yè)出口份額中大幅增加。一些經(jīng)合組織國家例如芬蘭、愛爾蘭、韓國、荷蘭和英國已經(jīng)增加了他們的高科技出口份額并超過其他國家。同樣,企業(yè)研發(fā)支出占

38、GDP的比例的變化在經(jīng)合組織各國之間也發(fā)展的很不平衡。高科技出口份額的發(fā)展和企業(yè)R&D強度之間的不同吸引了大量的政策興趣。企業(yè)R&D強度一般定義為在創(chuàng)新過程中的主要投入因素,而高新技術(shù)產(chǎn)品出口份額被認(rèn)為是一種重要的衡量創(chuàng)新成果的指標(biāo)。這兩項指標(biāo)都被廣泛使用,以衡量一個國家的創(chuàng)新績效。鑒于對具體的創(chuàng)新指標(biāo)的研究,最主要的問題是對于經(jīng)濟(jì)增長這兩種因素哪種更重要。</p><p>  相關(guān)實證文獻(xiàn)認(rèn)同對

39、R&D的投資對GDP和生產(chǎn)力增長(Bassanini和Scarpetta,2001年)都有不同程度的影響。然而,高新技術(shù)出口和經(jīng)濟(jì)增長之間的關(guān)系在工業(yè)化國家還是有些不清楚的??死姿共ê臀譅査梗–respo-Cuaresma and Worz,2005)發(fā)現(xiàn),技術(shù)密集型產(chǎn)業(yè)的出口份額和人均GDP呈現(xiàn)顯著正相關(guān),但是不適用于經(jīng)合組織國家,而僅僅只適用非經(jīng)合組織國家。潘納德(Peneder,2003年)發(fā)現(xiàn)使用這些數(shù)據(jù)用于經(jīng)合組織國家

40、時,技術(shù)出口帶動產(chǎn)業(yè)對人均GDP水平的增長有著積極而顯著的影響。在以前的研究中普遍存在一個被忽略的變量偏差,直到它們排出了R&D強度作為一種創(chuàng)新投入的指標(biāo)。</p><p>  本文的目的是提供新的視角研究高新技術(shù)產(chǎn)品出口對經(jīng)濟(jì)增長的影響?;?2個經(jīng)合組織國家在1980-2004年之間的面板數(shù)據(jù),使用系統(tǒng)廣義距估計方法估計出生長方程,該測量數(shù)據(jù)為5年的平均數(shù)。</p><p>&

41、lt;b>  實證模型</b></p><p>  實證模型是基于人力資本增加索洛(Solow)模型,而它又是來源于MRW模型(Mankiw-Romeer-Weil model,簡稱MRW模型)的。南那曼和凡浩特(Nonneman and Vanhoudt,1996)通過加入R&D占GDP的比重這一因素擴(kuò)展了MRW的模型。我們通過增加一項衡量創(chuàng)新產(chǎn)出的指標(biāo),如選擇高新技術(shù)產(chǎn)品出口份額作為

42、R&D強度,來進(jìn)一步擴(kuò)展MRW模型。以下是凱瑟琳等(Caselli,1996)建立的方程,基于面板數(shù)據(jù)人均GDP水平的穩(wěn)定狀態(tài)可以被描述為:</p><p>  其中是由工作年齡的人均GDP表示的1995年國家i在t期的購買力平價,其中代表一個國家具體的影響,代表一個時期的特定作用,然后是一個殘差項。該解釋變量包括投資比例,INVit代表企業(yè)的R&D支出占GDP的比重(企業(yè)研發(fā)支出),RDGDPi

43、t代表在工作年齡人口(25歲至64歲)中受教育的評價年數(shù)。摘自白若和李(Barro and Lee,2000),EDUit和高新技術(shù)產(chǎn)品出口占整體制造業(yè)出口的份額由表示。</p><p>  我們可以通過采用第一個差異項消除不可觀測且時間不變的,即國家的具體影響來得出回歸方程。(為了方便記錄,x包括解釋性變量):</p><p>  假設(shè)方程的殘差連續(xù)不相關(guān),滯后的y值在兩期或更長時間內(nèi)可

44、作為在第一個差分方程的工具。這意味著一下矩條件:</p><p>  為了應(yīng)對潛在的內(nèi)生性問題,我們假設(shè)解釋變量X是已知的,不是嚴(yán)格外生的,這意味著轉(zhuǎn)變一下的矩條件:</p><p>  使用布倫德爾和龐德(Blundell and Bond,1998年)提出的系統(tǒng)廣義距估計方法估計方程和距條件。這需要以下其他級的矩條件:</p><p><b>  和&

45、lt;/b></p><p><b>  估計結(jié)果</b></p><p>  表1顯示使用了三種不同的方式得出增長方程的估計結(jié)果。為了減少潛在異常值的影響,我們排除了標(biāo)準(zhǔn)化殘差落在-2到2區(qū)間之外的數(shù)據(jù)點,這就減少了7種樣本結(jié)果,然后剩下96種。在所有情況下,確定限制的Sargan測試為不能拒絕與5%水平殘差項不相關(guān)的零假設(shè)。</p><p

46、>  正如所預(yù)料的,我們發(fā)現(xiàn)高新技術(shù)產(chǎn)品的出口份額積極的進(jìn)入生長方程,并且有1%水平的顯著性相關(guān)。工作年齡人口的人均GDP與高新技術(shù)產(chǎn)品出口的份額短期和長期的相關(guān)彈性值分別為0.025和0.29。</p><p>  企業(yè)R&D支出占GDP的比重也是1%水平顯著相關(guān),意味著增加的R&D活動對人均GDP增長具有顯著的積極影響。企業(yè)R&D關(guān)于GDP的短期與長期彈性強度分別為0.021和0

47、.21。當(dāng)兩個變量都計算在內(nèi)時,高新技術(shù)產(chǎn)品出口份額的系數(shù)從0.025下降到0.011,而R&D的系數(shù)從0.021下降到0.014。有趣的是,R&D強度和高新技術(shù)出口份額的聯(lián)合效應(yīng)都等于0.025。然而,當(dāng)每個變量各自進(jìn)入回歸方程時,高新技術(shù)產(chǎn)品出口的點估計比企業(yè)R&D的影響更大,這表明企業(yè)R&D強度在解釋經(jīng)濟(jì)增長方面比技術(shù)專業(yè)化更重要。此外,由于共線性雙方的SE系數(shù)都增大,因此,我們還會提供具有聯(lián)合意義

48、的沃爾德試驗統(tǒng)計方法來表明企業(yè)R&D強度和高新技術(shù)產(chǎn)品出口份額有5%水平的顯著相關(guān)聯(lián)合。</p><p><b>  表1</b></p><p><b>  結(jié)論</b></p><p>  本文為高新技術(shù)產(chǎn)品出口份額和企業(yè)R&D強度對經(jīng)濟(jì)增長的力度具有影響提供了新的證據(jù)。如果不控制創(chuàng)新投入會導(dǎo)致高新技術(shù)

49、產(chǎn)品出口增長迅速,導(dǎo)致高估高新技術(shù)產(chǎn)品出口份額的影響。在使用系統(tǒng)廣義矩估計方法時,我們能夠控制同時性偏差,我們發(fā)現(xiàn),這兩項創(chuàng)新指標(biāo)分別進(jìn)入生長方程時都對經(jīng)濟(jì)增長有巨大的影響作用。當(dāng)這兩個指標(biāo)同時包括在生長方程里時,我們發(fā)現(xiàn)在解釋經(jīng)濟(jì)增長時,企業(yè)R&D強度比高新技術(shù)產(chǎn)品出口更重要。因此,未能清楚創(chuàng)新投入的內(nèi)容時,將會高估高新技術(shù)產(chǎn)品出口的影響力。</p><p>  本文研究的結(jié)果對政策制定者有重要的意義,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論