版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p> Components of A Building and Tall Buildings</p><p> Materials and structural forms are combined to make up the various parts of a building, including the load-carrying frame, skin, floors,
2、and partitions. The building also has mechanical and electrical systems, such as elevators, heating and cooling systems, and lighting systems. The superstructure is that part of a building above ground, and the substruc
3、ture and foundation is that part of a building below ground.</p><p> The skyscraper owes its existence to two developments of the 19th century: steel skeleton construction and the passenger elevator. Steel
4、 as a construction material dates from the introduction of the Bessemer converter in 1885.Gustave Eiffel (1832-1932) introduced steel construction in France. His designs for the Galerie des Machines and the Tower for the
5、 Paris Exposition of 1889 expressed the lightness of the steel framework. The Eiffel Tower, 984 feet (300 meters) high, was the tallest struct</p><p> The first elevator was installed by Elisha Otis instal
6、led the first elevator in a department store in New York in 1857.In 1889; Eiffel installed the first elevators on a grand scale in the Eiffel Tower, whose hydraulic elevators could transport 2,350 passengers to the summi
7、t every hour.</p><p> Load-Carrying Frame. Until the late 19th century, the exterior walls of a building were used as bearing walls to support the floors. This construction is essentially a post and lintel
8、type, and it is still used in frame construction for houses. Bearing-wall construction limited the height of buildings because of the enormous wall thickness required;For instance, the 16-story Monadnock Building built i
9、n the 1880’s in Chicago had walls 5 feet (1.5 meters) thick at the lower floors. In 1883, Willia</p><p> All tall buildings were built with a skeleton of steel until World War Ⅱ. After the war, the shortage
10、 of steel and the improved quality of concrete led to tall building being built of reinforced concrete. Marina Tower (1962) in Chicago is the tallest concrete building in the United States;Its height—588 feet (179 meters
11、)—is exceeded by the 650-foot (198-meter) Post Office Tower in London and by other towers.</p><p> A change in attitude about skyscraper construction has brought a return to the use of the bearing wall. In
12、New York City, the Columbia Broadcasting System Building, designed by Eero Saarinen in 1962, has a perimeter wall consisting of 5-foot (1.5meter) wide concrete columns spaced 10 feet (3 meters) from column center to cent
13、er. This perimeter wall, in effect, constitutes a bearing wall. One reason for this trend is that stiffness against the action of wind can be economically obtained by using </p><p> Skin. The skin of a bui
14、lding consists of both transparent elements (windows) and opaque elements (walls). Windows are traditionally glass, although plastics are being used, especially in schools where breakage creates a maintenance problem. Th
15、e wall elements, which are used to cover the structure and are supported by it, are built of a variety of materials: brick, precast concrete, stone, opaque glass, plastics, steel, and aluminum. Wood is used mainly in hou
16、se construction; It is not generally</p><p> Floors. The construction of the floors in a building depends on the basic structural frame that is used. In steel skeleton construction, floors are either slab
17、s of concrete resting on steel beams or a deck consisting of corrugated steel with a concrete topping. In concrete construction, the floors are either slabs of concrete on concrete beams or a series of closely spaced con
18、crete beams (ribs) in two directions topped with a thin concrete slab, giving the appearance of a waffle on its undersi</p><p> Mechanical and Electrical Systems. A modern building not only contains the spa
19、ce for which it is intended (office, classroom, apartment) but also contains ancillary space for mechanical and electrical systems that help to provide a comfortable environment. These ancillary spaces in a skyscraper of
20、fice building may constitute 25% of the total building area. The importance of heating, ventilating, electrical, and plumbing systems in an office building is shown by the fact that 40% of the construct</p><p&
21、gt; There have been attempts to incorporate the mechanical and electrical systems into the architecture of building by frankly expressing them; For example, the American Republic Insurance Company Building (1965) in Des
22、 Moines, Iowa, exposes both the ducts and the floor structure in an organized and elegant pattern and dispenses with the suspended ceiling. This type of approach makes it possible to reduce the cost of the building and p
23、ermits innovations, such as in the span of the structure.</p><p> Soils and Foundations. All building are supported on the ground, and therefore the nature of the soil becomes an extremely important conside
24、ration in the design of any building. The design of a foundation depends on many soil factors, such as type of soil, soil stratification, thickness of soil lavers and their compaction, and groundwater conditions. Soils r
25、arely have a single composition; They generally are mixtures in layers of varying thickness. For evaluation, soils are graded according to p</p><p> Due to both the compaction and flow effects, buildings te
26、nd settle. Uneven settlements, exemplified by the leaning towers in Pisa and Bologna, can have damaging effects—the building may lean, walls and partitions may crack, windows and doors may become inoperative, and, in the
27、 extreme, a building may collapse. Uniform settlements are not so serious, although extreme conditions, such as those in Mexico City, can have serious consequences. Over the past 100 years, a change in the groundwater le
28、vel</p><p> The great variability of soils has led to a variety of solutions to the foundation problem. Where firm soil exists close to the surface, the simplest solution is to rest columns on a small slab
29、of concrete (spread footing). Where the soil is softer, it is necessary to spread the column load over a greater area;in this case, a continuous slab of concrete(raft or mat) under the whole building is used. In cases wh
30、ere the soil near the surface is unable to support the weight of the building, piles o</p><p> The construction of a building proceeds naturally from the foundation up to the superstructure. The design proc
31、ess, however, proceeds from the roof down to the foundation (in the direction of gravity). In the past, the foundation was not subject to systematic investigation. A scientific approach to the design of foundations has b
32、een developed in the 20th century. Karl Terzaghi of the United States pioneered studies that made it possible to make accurate predictions of the behavior of foundations</p><p> Although there have been man
33、y advancements in building construction technology in general, spectacular achievements have been made in the design and construction of ultrahigh-rise buildings.</p><p> The early development of high-rise
34、buildings began with structural steel framing. Reinforced concrete and stressed-skin tube systems have since been economically and competitively used in a number of structures for both residential and commercial purposes
35、. The high-rise buildings ranging from 50 to 110 stories that are being built all over the United States are the result of innovations and development of new structural systems.</p><p> Greater height entai
36、ls increased column and beam sizes to make buildings more rigid so that under wind load they will not sway beyond an acceptable limit. Excessive lateral sway may cause serious recurring damage to partitions, ceilings, an
37、d other architectural details. In addition, excessive sway may cause discomfort to the occupants of the building because of their perception of such motion. Structural systems of reinforced concrete, as well as steel, ta
38、ke full advantage of the inherent potent</p><p> In a steel structure, for example, the economy can be defined in terms of the total average quantity of steel per square foot of floor area of the building.
39、The gap between the upper boundary and the lower boundary represents the premium for all lateral loads. The gap between the upper boundary and the lower boundary represents the premium for height for the traditional colu
40、mn-and-beam frame. Structural engineers have developed structural systems with a view to eliminating this premium.</p><p> Systems in steel. Tall buildings in steel developed as a result of several types of
41、 structural innovations. The innovations have been applied to the construction of both office and apartment buildings.</p><p> Frames with rigid belt trusses. In order to tie the exterior columns of a frame
42、 structure to the interior vertical trusses, a system of rigid belt trusses at mid-height and at the top of the building may be used. A good example of this system is the First Wisconsin Bank Building (1974) in Milwaukee
43、.</p><p> Framed tube. The maximum efficiency of the total structure of a tall building, for both strength and stiffness, to resist wind load can be achieved only if all column elements can be connected to
44、each other in such a way that the entire building acts as a hollow tube or rigid box in projecting out of the ground. This particular structural system was probably used for the first time in the 43-story reinforced conc
45、rete DeWitt Chestnut Apartment Building in Chicago. The most significant use of this</p><p> Column-diagonal truss tube. The exterior columns of a building can be spaced reasonably far apart and yet be made
46、 to work together as a tube by connecting them with diagonal members intersecting at the center line of the columns and beams. This simple yet extremely efficient system was used for the first time on the John Hancock Ce
47、nter in Chicago, using as much steel as is normally needed for a traditional 40-story building.</p><p> Bundled tube. With the continuing need for larger and taller buildings, the framed tube or the column-
48、diagonal truss tube may be used in a bundled form to create larger tube envelopes while maintaining high efficiency. The 110-story Sears Roebuck Headquarters Building in Chicago has nine tubes, bundled at the base of the
49、 building in three rows. Some of these individual tubes terminate at different heights of the building, demonstrating the unlimited architectural possibilities of this latest str</p><p> Stressed-skin tube
50、system. The tube structural system was developed for improving the resistance to lateral forces (wind or earthquake) and the control of drift (lateral building movement) in high-rise building. The stressed-skin tube take
51、s the tube system a step further. The development of the stressed-skin tube utilizes the facade of the building as a structural element which acts with acts with the framed tube, thus providing an efficient way of resist
52、ing lateral loads in high-rise buildings,</p><p> Because of the contribution of the stressed-skin facade, the framed members of the tube require less mass, and are thus lighter and less expansive. All the
53、typical columns and spandrel beams are standard rolled shapes, minimizing the use and cost of special built-up members. The depth requirement for the perimeter spandrel beams is also reduced, and the need for upset beams
54、 above floors, which would encroach on valuable space, is minimized. The structural system has been used on the 54-story One</p><p> Systems in concrete. While tall buildings constructed of steel had an ear
55、ly start, development of tall buildings of reinforced concrete progressed at a fast enough rate to provide a competitive challenge to structural steel systems for both office and apartment buildings.</p><p>
56、 Framed tube. As discussed above, the first framed tube concept for tall buildings was used for the 43-story DeWitt Chestnut Apartment Building. In this building, exterior columns were spaced at 5.5-ft (1.68-m) centers,
57、 and interior columns were used as needed to support the 8-in.-thick (20-cm) flat-plate concrete slabs.</p><p> Tube in tube. Another system in reinforced concrete for office buildings combines the traditio
58、nal shear wall construction with an exterior framed tube. The system consists of an outer framed tube of very closely spaced columns and an interior rigid shear wall tube enclosing the central service area. The system (F
59、ig.2), known as the tube-in-tube system, made it possible to design the world’s present tallest (714 ft or 218 m) lightweight concrete building (the 52-story One Shell Plaza Building in </p><p> Systems com
60、bining both concrete and steel have also been developed, an example of which is the composite system developed by Skidmore, Owings & Merrill in which an exterior closely spaced framed tube in concrete envelops an int
61、erior steel framing, thereby combining the advantages of both reinforced concrete and structural steel systems. The 52-story One Shell Square Building in New Orleans is based on this system.</p><p> 出處:《土木工
62、程專業(yè)英語》,段兵廷主編,武漢理工大學(xué)出版社</p><p> 建筑物的組成及高層結(jié)構(gòu)</p><p> 材料和不同的結(jié)構(gòu)形式構(gòu)成建筑物各種不同部分,包括承重框架、外殼、樓板和隔墻。在建筑物內(nèi)部還有機(jī)械和電氣系統(tǒng),例如電梯、供暖和冷卻系統(tǒng)、照明系統(tǒng)等。地面以上的部分是建筑物的上部結(jié)構(gòu),地面以下部分為建筑物的基礎(chǔ)和下部結(jié)構(gòu)。</p><p> 摩天大樓的出現(xiàn)應(yīng)歸
63、功于19世紀(jì)的兩大發(fā)展:鋼骨架結(jié)構(gòu)和載人電梯。鋼材作為一種建筑材料,是從1855年貝西默煉鋼法被首次介紹后開始應(yīng)用的。古斯塔?艾菲爾(1832~1923)首次將鋼結(jié)構(gòu)引入法國。1889年的巴黎國際博覽會的塔和他為Galerie des 機(jī)械的設(shè)計(jì)表現(xiàn)了鋼結(jié)構(gòu)的靈活性。艾菲爾鐵塔高300米,是當(dāng)時(shí)人類建造的最高建筑物,直到40年后才由美國的摩天大樓超過其高度。</p><p> 第一部電梯是1857年Elisha
64、 Otis給紐約的一家百貨公司所安裝的。1889年,艾菲爾在艾菲爾鐵塔上安裝了第一部大型電梯,它每小時(shí)可以運(yùn)送2350位乘客到達(dá)塔頂。</p><p> 承重框架。直到19世紀(jì)后期,建筑物的外墻被用做承重墻來支撐樓層,這種結(jié)構(gòu)是本質(zhì)上是一種梁柱模型,它還被用在框架結(jié)構(gòu)房屋中。因?yàn)樗鑹w的厚度很大,承重墻結(jié)構(gòu)限制了建筑物的高度;例如,建于19世紀(jì)80年代的芝加哥16層高的Monadnock Building,
65、在較低的樓層墻體厚度已達(dá)到1.5米。1883年,Willian Le Baron Jenney(1832~1907)用鑄鐵柱來支撐樓層的方式以形成籠狀結(jié)構(gòu)。在1889年,框架結(jié)構(gòu)首次由鋼梁和鋼柱構(gòu)成。由于骨架結(jié)構(gòu),圍墻變成了一種“幕墻”。磚石一直是“幕墻”的主要材料,直到20世紀(jì)30年代輕金屬和玻璃幕墻的問世為止。自從鋼框架首次推出,建筑物的高度一直在迅速增加。</p><p> 在第二次世界大戰(zhàn)前,所有的高層
66、建筑都是鋼結(jié)構(gòu)。戰(zhàn)爭結(jié)束以后,鋼材的缺乏和混凝土質(zhì)量的改進(jìn),促進(jìn)了鋼筋混凝土高層建筑的發(fā)展。芝加哥的Marina Towers(1962)是美國最高的混凝土建筑;它的高度是588英尺即179米,不久以后被倫敦的高達(dá)650英尺即198米的郵政大廈和其它的塔所超越。</p><p> 在關(guān)于摩天大樓構(gòu)造觀點(diǎn)的改變恢復(fù)了承重墻的使用。在紐約,由Eero Saarinen于1962年設(shè)計(jì)的哥倫比亞廣播公司大樓,由1.5
67、米寬,柱與柱的中心間距為3米的混凝土柱組成的環(huán)形墻。這種圍護(hù)墻有效地構(gòu)成了建筑物的承重墻。這種趨勢發(fā)展的原因是建筑物的墻作為一個(gè)筒體可以非常經(jīng)濟(jì)的獲得抗風(fēng)作用的足夠強(qiáng)度;世貿(mào)大樓是另一個(gè)筒體法的例子。相比之下,剛性框架或者垂直的桁架通常用于提供側(cè)向穩(wěn)定性。</p><p> 外殼。一個(gè)建筑的外殼由透明元素(窗戶)和不透明元素(墻)組成。窗戶采用傳統(tǒng)上的玻璃作為材料,盡管塑料正在被使用,特別在學(xué)校,破損產(chǎn)生了一個(gè)
68、維護(hù)問題。用來覆蓋結(jié)構(gòu)和起支撐作用墻,它是由各種的建筑材料組成:磚、預(yù)制構(gòu)件、石頭、不透明的玻璃、塑料、鋼材和鋁材。木頭是過去建造房屋的主要材料;因?yàn)樗字?,因而不常用于商業(yè)的、工業(yè)的和公共建筑。</p><p> 樓板。一幢建筑的樓地面結(jié)構(gòu)取決于它所使用的基本結(jié)構(gòu)框架。在鋼框架建筑中,樓地面或者是鋼梁上的混凝土樓板,或者是由波紋鋼配有混凝土骨料組成的凹板。在混凝土結(jié)構(gòu)中,樓板或者是混凝土梁上的混凝土樓板或者
69、是一系列緊密分布于混凝土梁在方向上端的薄混凝土樓板,在它的下面提供了一個(gè)多余的空寂間。這種類型的板取決于支撐柱之間的距離或者墻間的跨度和空間的功能性。在一棟公寓大樓中,例如,墻和柱間距在3.7米到5.5米,最常見的結(jié)構(gòu)是無梁實(shí)心混凝土樓蓋。樓蓋的下表面可以作為下層空間的天花板。辦公大樓中常使用波紋鋼地板,這是因?yàn)椴y鋼地板的波紋當(dāng)由另一塊金屬板蓋上時(shí),可以形成電話線和電線管道。</p><p> 機(jī)械和電力系統(tǒng)
70、。一個(gè)現(xiàn)代建筑不僅包括必要使用空間(辦公室,教室,公寓)而且也包括機(jī)械、電力系統(tǒng)等的輔助空間,以便營造一個(gè)舒適的生活環(huán)境。這些輔助空間可能占摩天大樓總建筑面積的25%。在一個(gè)辦公大樓中,供暖、通風(fēng)、電力和衛(wèi)生設(shè)備系統(tǒng)的預(yù)算額占實(shí)際建筑總預(yù)算額的40%,顯示了它們在建筑中的重要性。因?yàn)樵S多建筑是密封的,窗戶不能被打開,因而由機(jī)械系統(tǒng)提供了通風(fēng)設(shè)備和空氣調(diào)節(jié)設(shè)備。新鮮空氣從中央換氣室由空氣調(diào)節(jié)器用管道輸入。通風(fēng)管和控制照明設(shè)備單元由懸掛在上
71、面樓層結(jié)構(gòu)下面的天花板遮住了。提供動(dòng)力的電力線路和電話通訊線路也可能在天花板里或者也可能在樓地面結(jié)構(gòu)層中的管道或?qū)Ь€管里。</p><p> 我們曾嘗試性地把機(jī)械、電力系統(tǒng)加入建筑物的建筑學(xué)中去。例如在愛荷華州首府的美國共和保險(xiǎn)公司大樓,管道和樓地面的結(jié)構(gòu)層有組織的、優(yōu)美的懸掛在天花板上。這類型的方法使得建筑物的花費(fèi)盡可能的減少了并且使結(jié)構(gòu)有了創(chuàng)新,例如在結(jié)構(gòu)間距方面。</p><p>
72、 土地和地基。所有的建筑物都是靠土層支撐在地面上的,因而土的特性成為建筑設(shè)計(jì)時(shí)極其重要的考慮因素?;A(chǔ)的設(shè)計(jì)取決于土的許多因素,例如土的類型,土分層的情況,土層的厚度和它的密實(shí)度,以及地下水的情況等。土層很少有一個(gè)單一的成分;他們通常是厚度變化的混合狀態(tài)土層。據(jù)評定,土層的等級是根據(jù)土分子的大小來劃分,從小到大依次是淤泥、粘土、沙、石子、巖石。通常,較大分子的土支撐的荷載要大。最堅(jiān)硬的巖石能夠支撐的荷載大約是每平方米100噸,而最軟的
73、淤泥僅能夠支撐的荷載大約是每平方米0.25噸。所有地表以下的土都處于受壓狀態(tài),說得更精確些,這些土承受與作用在其上的土柱重量相等的壓力。許多土顯示出彈性的性質(zhì)——在荷載作用下受壓變形,當(dāng)荷載解除后可以回彈。土的彈性常隨時(shí)間而改變,更精確地說,土層的變形在恒載作用下隨著時(shí)間的增長而不斷地改變。過一段時(shí)間后,如果加于土層上的荷載大于土自然壓緊狀態(tài)下的重量,則建筑物會產(chǎn)生沉降。相反,則會產(chǎn)生隆起,建筑物的重量可能會使土產(chǎn)生流動(dòng);也就是說,經(jīng)常
74、會發(fā)生土被擠出。</p><p> 由于土受壓和流動(dòng)的影響,使建筑物發(fā)生沉降。不均勻沉降例如比薩斜塔,損壞的結(jié)果是建筑物發(fā)生傾斜,墻和隔墻可能出現(xiàn)裂縫,窗戶和門可能產(chǎn)生變形,或者甚至建筑可能倒塌。均勻沉降不會如此嚴(yán)重,盡管可能出現(xiàn)危險(xiǎn)狀況,例如墨西哥城的一些建筑,出現(xiàn)各種各樣的后果,在過去的一年里,地下水位發(fā)生了改變,致使一些建筑下沉了3米多。因?yàn)轭愃频臓顩r可能發(fā)生在建造時(shí)也可能是建造后,因此小心處理建筑物下的
75、土層是極其重要的。</p><p> 土層巨大的變化使得解決地基問題的辦法多樣化。如果表面土層下的土為堅(jiān)硬土層,最簡單的辦法是采用混凝土基礎(chǔ)。若是軟弱土層,加大柱的面積;假如這樣的話,整個(gè)建筑就可采用筏板基礎(chǔ)。假設(shè)表面土層不能夠支撐建筑物的重量,木結(jié)構(gòu)建筑、鋼結(jié)構(gòu)建筑、或者混凝土建筑應(yīng)建造在堅(jiān)硬土層上。</p><p> 建造一幢建筑物一般是從基礎(chǔ)往上到上部結(jié)構(gòu)。然而設(shè)計(jì)的過程是從屋頂
76、開始到基礎(chǔ)。在過去,地基處理不是一個(gè)系統(tǒng)的研究項(xiàng)目。在20世紀(jì),一種科學(xué)的地基設(shè)計(jì)方法已經(jīng)發(fā)展起來了。美國的Karl Teraghi不斷創(chuàng)造研究,使土力學(xué)和土地勘測聯(lián)合起來,讓它盡可能準(zhǔn)確地預(yù)測地基的活動(dòng)狀態(tài)。過去典型的地基破壞的例子——比薩斜塔現(xiàn)在變得幾乎不存在了。而地基仍然是建筑物中不可見部分費(fèi)用最大的一部分。</p><p> Fazlur Rahman Khan盡管大體上在建筑物的建造工藝上取得許多進(jìn)步
77、,但是在超高層建筑物的設(shè)計(jì)和建造上仍取得了驚人的成就。</p><p> 早期的高層建筑的發(fā)展是以型鋼結(jié)構(gòu)開始的。鋼筋混凝土和薄殼筒體體系已成為許多住宅和商業(yè)建筑以節(jié)儉和競爭為目的的結(jié)構(gòu)。作為新結(jié)構(gòu)體系的創(chuàng)新和發(fā)展的結(jié)果,美國到處都是50到110層的高層建筑。</p><p> 巨大的高度需要增加柱和梁的尺寸來使建筑物更加堅(jiān)固,為的是在風(fēng)荷載作用下不致于使其傾斜度超過限值。反復(fù)地過多地
78、側(cè)向擺動(dòng)可能引起隔墻天花板和其它建筑部件的損壞。另外,過度的擺動(dòng)可能會給建筑物中的居住者帶來不安和恐懼,因?yàn)闀顾麄冇幸苿?dòng)的感覺。鋼筋混凝土結(jié)構(gòu)體系和鋼結(jié)構(gòu)一樣,內(nèi)在的潛力使得建筑物非常堅(jiān)硬因此不需要附加的強(qiáng)化擺動(dòng)限制。</p><p> 在一個(gè)鋼結(jié)構(gòu)中,例如,根據(jù)建筑物每平方米的樓層面積的總的平均用量表明其經(jīng)濟(jì)性。上邊界和下邊界之間的間距表示一般的梁—柱框架為高度付出的額外費(fèi)用。結(jié)構(gòu)工程師以發(fā)展了可以取消這一
79、額外費(fèi)用的結(jié)構(gòu)體系。</p><p> 鋼結(jié)構(gòu)體系。高層鋼結(jié)構(gòu)建筑已經(jīng)發(fā)展成為結(jié)構(gòu)創(chuàng)新結(jié)果的幾個(gè)類型,建筑的創(chuàng)新已經(jīng)被運(yùn)用到辦公大樓和公寓大樓的建設(shè)上了。</p><p> 帶有剛性帶式桁架的框架。為了把框架結(jié)構(gòu)的外柱與內(nèi)部垂直桁架連在一起,可以在高層建筑的中間和頂部設(shè)置剛性帶式桁架系統(tǒng)。這個(gè)體系的非常好的例子是美國威斯康辛州的威斯康辛第一銀行大樓(1974)。</p>
80、<p> 框架筒體。高層建筑結(jié)構(gòu)最大的功效是強(qiáng)度和堅(jiān)固性,為了抵抗風(fēng)荷載,在設(shè)計(jì)時(shí)如果所有的柱基礎(chǔ)能夠以一種方式互相聯(lián)系起來,使得全部的建筑充當(dāng)空心的筒體或堅(jiān)硬的箱型。這種特殊的結(jié)構(gòu)形式最初在芝加哥的一座43層高的鋼筋混凝土建筑DeWitt Chestnut Apartment Building中使用。在紐約110層的世界貿(mào)易中心雙子塔也是采用了這種結(jié)構(gòu)形式。</p><p> 對角柱桁架支撐筒體。
81、建筑物的外柱間距可以適當(dāng)?shù)姆指?,但仍能通過在梁柱中心線處交叉對角構(gòu)件連接使之作為一個(gè)筒體共同工作。這個(gè)簡單但極為有效的系統(tǒng)被用于在芝加哥約翰漢考克中心,使用鋼數(shù)量和通常一個(gè)傳統(tǒng)的40層建筑鋼需要量差不多。</p><p> 組合筒體。隨著對更高的建筑的需求的增大,框筒或?qū)侵旒芡部刹捎媒M合的形式,創(chuàng)造更大的筒體,同時(shí)保持高效率。 110層的西爾斯在芝加哥的總部大樓有九個(gè)筒,由三排建筑物組合而成。有些個(gè)別筒體終
82、止在不同高度的建筑,展示了這一最新的建筑結(jié)構(gòu)概念無限的可能性。西爾斯大廈在1450米,高(442米),是世界上最高的建筑</p><p> 薄殼筒體系。結(jié)構(gòu)系統(tǒng)是為提高抗側(cè)向力(風(fēng),地震)和漂移高層建筑(橫向建筑運(yùn)動(dòng))的控制。薄殼筒體使筒體結(jié)構(gòu)體系有了進(jìn)一步發(fā)展。薄殼筒的進(jìn)步是利用(高層)建筑的外表面(墻和板)作為與框筒共同作用的結(jié)構(gòu)構(gòu)件,為高層建筑抵抗側(cè)向荷載提供了一個(gè)有效途徑,而且可獲得不設(shè)柱子,節(jié)省成本,
83、使用面積與建筑面積之比很高的室內(nèi)空間。</p><p> 由于薄殼表面作用,筒體的框架構(gòu)件數(shù)量減少,使得結(jié)構(gòu)更輕,費(fèi)用更少。所有標(biāo)準(zhǔn)柱和梁拱肩形狀是標(biāo)準(zhǔn)型鋼,減少使用和特殊建成的成本。周長為梁拱肩深度要求也減少了,并且需要為底價(jià)以上樓層,這將侵犯寶貴的空間梁,最小化。結(jié)構(gòu)系統(tǒng)已用在54層的一個(gè)在匹茲堡梅隆銀行中心。</p><p> 混凝土體系。雖然用鋼建造高樓大廈有一個(gè)起步較早,高大
84、的鋼筋混凝土在一個(gè)足夠快的速度發(fā)展到提供具有競爭力的挑戰(zhàn),為辦公室和公寓樓鋼結(jié)構(gòu)體系建筑的發(fā)展。</p><p> 框架筒體。如上所述,第一框架筒體的概念是應(yīng)用于43層德威特板栗公寓樓。在這個(gè)大樓,外柱為5.5英尺(1.68米)的間隔排列,以及內(nèi)柱間距被用作需要支持的8英寸厚(20厘米)的平板式混凝土板。</p><p> 筒中筒。另一個(gè)辦公樓鋼筋混凝土系統(tǒng)結(jié)合了內(nèi)部框架筒體和傳統(tǒng)的外
85、部框筒剪力墻施工。該系統(tǒng)由間距很小的柱子構(gòu)成的外框架筒與圍繞中心設(shè)備區(qū)的剛性剪力墻內(nèi)筒組成該。這種體系,使人們有可能設(shè)計(jì)出世界上目前最高的(714英尺或218米)輕質(zhì)混凝土建筑(52層一殼廣場大廈在休斯頓),其費(fèi)用只相當(dāng)于一個(gè)傳統(tǒng)的只有35層高剪力墻。</p><p> 混凝土與鋼筋結(jié)合的結(jié)構(gòu)體系已得到發(fā)展,這種復(fù)合體系發(fā)展的一個(gè)例子是Skidmore,Owings和Merrill,它是采用間距很小的混凝土外框
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑物的結(jié)構(gòu)外文翻譯
- 土木外文翻譯---高層建筑與鋼結(jié)構(gòu)
- 高層建筑組成外文翻譯
- 建筑土木畢業(yè)設(shè)計(jì)中英文翻譯--新型高層建筑物結(jié)構(gòu)交錯(cuò)排列剪力墻結(jié)構(gòu)
- 建筑土木畢業(yè)設(shè)計(jì)中英文翻譯--建筑及高層建筑的組成
- 土木類外文翻譯建筑的組成(譯文和英文)
- 土木外文翻譯--建筑土木結(jié)構(gòu)與砌體結(jié)構(gòu)
- 高層結(jié)構(gòu)建筑外文翻譯
- 土木外文翻譯----建筑結(jié)構(gòu)的造價(jià)
- 土木外文翻譯---建筑結(jié)構(gòu)的造價(jià)
- [雙語翻譯]--土木工程外文翻譯--關(guān)于海嘯對建筑物及橋梁的危害的模擬實(shí)驗(yàn)
- 土木工程畢業(yè)設(shè)計(jì)外文翻譯-高層建筑結(jié)構(gòu)
- 外文翻譯---公寓建筑物的防火安全設(shè)計(jì)
- 土木專業(yè)畢業(yè)設(shè)計(jì)外文翻譯---高層建筑
- 建筑外文翻譯---高層結(jié)構(gòu)與鋼結(jié)構(gòu)
- 土木工程外文翻譯---高層結(jié)構(gòu)與鋼結(jié)構(gòu)
- [雙語翻譯]--土木工程外文翻譯--關(guān)于海嘯對建筑物及橋梁的危害的模擬實(shí)驗(yàn)(原文)
- [雙語翻譯]--土木工程外文翻譯--關(guān)于海嘯對建筑物及橋梁的危害的模擬實(shí)驗(yàn)(譯文)
- 論高層建筑物地質(zhì)結(jié)構(gòu)設(shè)計(jì)
- 外文翻譯---高層建筑及結(jié)構(gòu)設(shè)計(jì)
評論
0/150
提交評論