版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> 本 科 生 畢 業(yè) 設(shè) 計(jì)</p><p> 外 文 資 料 翻 譯</p><p> 題 目 單級(jí)倒立擺的控制方法研究 </p><p> 專 業(yè) 電子信息工程 </p><p> 班 級(jí) 083班 &l
2、t;/p><p> 姓 名 孫穎敏 </p><p> 指導(dǎo)教師 周衛(wèi)華(副教授)、許森(助教)</p><p> 所在學(xué)院 信息科技學(xué)院 </p><p> 附 件1.外文資料翻譯譯文;2.外文原文 </p><p><b>
3、 譯文一:</b></p><p><b> 倒立擺系統(tǒng)</b></p><p> 倒立擺系統(tǒng)是一種廣泛應(yīng)用的實(shí)驗(yàn)平臺(tái),在該平臺(tái)上,可以采用反饋控制理論鎮(zhèn)定不穩(wěn)定的開(kāi)環(huán)系統(tǒng)使之達(dá)到穩(wěn)定狀態(tài)。這個(gè)問(wèn)題的第一個(gè)的解決方法是在Roberge[1]的一篇名為《機(jī)械密封》的論文中做出了描述。隨后,它作為一種不穩(wěn)定系統(tǒng)的范例被用于許多報(bào)刊書籍。</p>
4、;<p> Siebert[2,177-182頁(yè)]運(yùn)用勞斯判據(jù)對(duì)這個(gè)系統(tǒng)做了完整的分析,通過(guò)乘以一個(gè)特征方程作為S的多項(xiàng)式的系數(shù)的研究。雖然正確,但這種做法是不必要的。此系統(tǒng)就是一種理想的根軌跡分析范例。</p><p> 圖1倒立擺的幾何結(jié)構(gòu)圖</p><p> 考慮倒立擺系統(tǒng)如圖1所示。在垂直方向產(chǎn)生的擺角θ的角重力加速度值等于,而小車在方向產(chǎn)生的角加速度為。寫出這
5、些加速度的運(yùn)動(dòng)方程,使之線性化,再進(jìn)行拉普拉斯變換,我們得到了傳遞函數(shù)G(s)如下:</p><p> 其中時(shí)間常數(shù)定義為。該傳遞函數(shù)有一個(gè)在右半邊,和我們對(duì)不穩(wěn)定系統(tǒng)所預(yù)期一致的極點(diǎn)。</p><p> 我們開(kāi)始進(jìn)行反饋設(shè)計(jì),通過(guò)有傳遞函數(shù)M(s)控制的電機(jī)發(fā)動(dòng)小車,并用比例電壓?jiǎn)?dòng)電機(jī)使之形成角θ。包括常見(jiàn)的運(yùn)動(dòng)傳遞函數(shù):</p><p> 圖2 擺桿和電
6、機(jī)的根軌跡圖,</p><p> 通過(guò)函數(shù)G(s),我們得到了一個(gè)極點(diǎn)保持在右半邊的根軌跡。使用規(guī)范化編號(hào),我們得到了如圖2所示的根軌跡圖。</p><p> 為了穩(wěn)定系統(tǒng),我們需要擺脫剩余的零點(diǎn)起源,以便極點(diǎn)能在左半邊的正實(shí)軸移動(dòng)形成軌跡。因此我們的補(bǔ)償器必須包括一個(gè)在原點(diǎn)的極點(diǎn)。然而,我們必須平衡增加的補(bǔ)償器極點(diǎn)和一項(xiàng)附加零,以便是少于零點(diǎn)數(shù)量的極點(diǎn)數(shù)量在遠(yuǎn)離根軌跡漸近線的
7、7;90°的為止仍然等于兩個(gè)(否則,漸近線將變成±180°和±60°。它將最終導(dǎo)致極點(diǎn)產(chǎn)生在右半邊)。因此,我們用一個(gè)補(bǔ)償器</p><p> 同時(shí)我們假定。該系統(tǒng)的方塊框圖如圖3所示,而根軌跡圖則如圖4(請(qǐng)注意:只要將G(s)倒置,我們就能畫出正數(shù)總和結(jié)點(diǎn)的框圖)。</p><p><b> 圖3補(bǔ)償系統(tǒng)的框圖</b&
8、gt;</p><p> 圖4 擺桿綜合補(bǔ)償?shù)母壽E圖,</p><p> Siebert解釋說(shuō)這個(gè)積分器所需的物理解釋是根據(jù)我們所用的二階壓控馬達(dá)而產(chǎn)生的。沒(méi)有積分常數(shù)角誤差只能實(shí)現(xiàn)車的恒速運(yùn)動(dòng),但這不足以使擺桿直立。為了能在擺桿的“下面”,小車必須被加速。因此,我們需要一個(gè)積分器。</p><p> 該系統(tǒng)現(xiàn)在已經(jīng)的確穩(wěn)定了,但是,它的根軌跡仍非常接近jω
9、軸。結(jié)論是閉環(huán)系統(tǒng)有非常低利潤(rùn)的穩(wěn)定性并且會(huì)有很振蕩的反應(yīng)的障礙。一個(gè)簡(jiǎn)單的解決問(wèn)題的辦法是降低電機(jī)時(shí)間常數(shù)和速度反饋,使其質(zhì)心的漸進(jìn)線移動(dòng)到左邊。該系統(tǒng)的根軌跡圖則如圖5所示。</p><p> 圖5改善點(diǎn)擊時(shí)間常數(shù)的擺桿根軌跡圖</p><p> 不幸的是,該系統(tǒng)仍然存在一個(gè)很微妙的問(wèn)題??紤]從到的閉環(huán)傳遞函數(shù)如圖3所示。</p><p> 在原點(diǎn)的極點(diǎn)是
10、系統(tǒng)受到漂移。通過(guò)這些積分器,莫非定律保證的反應(yīng)時(shí)間會(huì)無(wú)限制地增長(zhǎng),而小車將會(huì)迅速的拋出軌道。</p><p> 解決辦法就是在電機(jī)和補(bǔ)償器周圍加上正反饋。該反饋回路將會(huì)影響原點(diǎn)到極點(diǎn)的運(yùn)動(dòng),從而防止零極點(diǎn)取消來(lái)源是無(wú)法控制的模式。系統(tǒng)現(xiàn)在的根軌跡圖則如圖6所示。</p><p> 圖6擺桿在補(bǔ)償位置的根軌跡圖</p><p> Siebert指出,這種正反饋
11、會(huì)使電機(jī)最初在有嚴(yán)重的偏差,但這種行為是理想的效果。為了使手上的尺保持平衡,當(dāng)尺移到右邊時(shí),你必須首先迅速將你的手向左急轉(zhuǎn),指向尺的右邊,以便當(dāng)你的手趕上尺子,你必須同時(shí)將你的手和尺移到右邊。</p><p> 物理上,擺桿會(huì)穩(wěn)定在離垂直方向的一個(gè)小角度,這樣它總是指向軌道的中心。因此,擺桿總是“落”在軌道的中心,而唯一可能的平衡點(diǎn)就是在軌道中間的垂直擺桿。如果小車在軌道中心的左邊,控制穩(wěn)定擺桿指向右,以便它之
12、后向右靠一點(diǎn)。為了趕上倒下的擺桿,小車必須向右移動(dòng)(返回到中心)。這樣就會(huì)運(yùn)動(dòng)到理想狀態(tài)!</p><p><b> 譯文二:</b></p><p><b> 倒立擺</b></p><p> 關(guān)鍵詞:倒立擺,模型,PID控制,LQR控制</p><p> 倒立擺是什么?還記得當(dāng)你是個(gè)孩子
13、時(shí)你曾用你的食指或者掌心設(shè)法去平衡一把掃帚柄或者棒球棍嗎?你必須不斷地調(diào)整你的手的位置以保持對(duì)象的垂直。一個(gè)倒立擺在本質(zhì)上就是做相同的事情。然而,它會(huì)受限制因?yàn)樗荒茉谝?#160;定范圍內(nèi)移動(dòng),雖然你的手可以上升、下降、斜向一邊等等。檢查錄象提供的畫面來(lái)觀察倒立擺是如何確切 地工作的。</p><p> 一個(gè)倒立擺是個(gè)物理設(shè)備它包括一個(gè)圓柱體的棒子(通常是鋁的)可以在一個(gè)支點(diǎn)周圍振蕩。這個(gè)支點(diǎn)是安在
14、一個(gè)車架上,它的轉(zhuǎn)動(dòng)方向是水平的偏轉(zhuǎn)。小車是由一個(gè)馬達(dá)控制的,它可以運(yùn)用于一個(gè)變力。棒子會(huì)有自然的趨勢(shì)從最高的豎直位置下落,那是一個(gè)不穩(wěn)定的平衡位置。</p><p> 實(shí)驗(yàn)的目標(biāo)是使擺(棒子)穩(wěn)定在最高的豎直位置。這是有可能的只要運(yùn)用通過(guò)馬達(dá)的小車一個(gè)力該力可以與“自由”擺的動(dòng)力學(xué)抵消。這個(gè)正確的力必須通過(guò)計(jì)算測(cè)量水平偏轉(zhuǎn)的瞬時(shí)值和擺的角度(獲得兩個(gè)電位計(jì))。</p><p> 倒立
15、擺是干什么的?就好象掃帚柄,一個(gè)倒立擺是一個(gè)天生的不穩(wěn)定系統(tǒng)。力度必須被嚴(yán)格地應(yīng)用以保持系統(tǒng)的完整性。為了實(shí)現(xiàn)它,嚴(yán)格的控制理論是必須的。倒立擺在求數(shù)值和各種控制理論的比較中是必要的。</p><p> 倒立擺是一個(gè)控制器系統(tǒng)中的一個(gè)傳統(tǒng)的例子(既不困難也不是沒(méi)有價(jià)值)。盡管它是仿真和實(shí)驗(yàn)來(lái)顯示不同控制器的性能(舉例來(lái)說(shuō)PID控制器,狀態(tài)空間控制器,模糊控制器)。</p><p> 實(shí)
16、時(shí)倒立擺被作為一個(gè)基準(zhǔn),去測(cè)試軟件在狀態(tài)空間控制器運(yùn)算法則下的有效性和性能,也就是實(shí)用的操作系統(tǒng)。事實(shí)上運(yùn)算法則是通過(guò)數(shù)值點(diǎn)實(shí)現(xiàn)的該數(shù)值點(diǎn)看作一組互助的協(xié)同操作的任務(wù),它是周期性的通過(guò)核心的活動(dòng),它執(zhí)行不同的計(jì)算。這些任務(wù)如何活動(dòng)的方法(舉例來(lái)說(shuō)激活命令)被稱作任務(wù)的時(shí)序安排。很明顯每個(gè)任務(wù)的時(shí)序安排對(duì)控制器的一個(gè)好的性能是至關(guān)緊要的,因此對(duì)一個(gè)擺的穩(wěn)定性是有效的。如此倒立擺是非常有用的在決定是否一個(gè)特殊的時(shí)序安排的選擇比另一個(gè)好,在哪
17、個(gè)情形下,在什么程度內(nèi)等等。</p><p> 為倒立擺建模。通常倒立擺系統(tǒng)建模成一個(gè)線形系統(tǒng),因此模型只對(duì)小幅度擺動(dòng)的擺才有效。 </p><p> 通過(guò)梯形輸入隸屬函數(shù)的使用和適當(dāng)?shù)淖鲌D法和推論方法,這將說(shuō)明那是有可能遵循規(guī)則區(qū)域勸導(dǎo)的輸 入變量仿射函數(shù)的隸屬函數(shù)。我們提出線形逆模糊化算法它能這個(gè)區(qū)域勸導(dǎo)仿射結(jié)構(gòu)和產(chǎn)生一個(gè)塊仿射控制 器。一個(gè)特殊的系統(tǒng)的參數(shù)調(diào)節(jié)
18、方法將會(huì)被給定它允許把這個(gè)控制器調(diào)節(jié)成一個(gè)可變的結(jié)構(gòu)相似的控制器。 我們將比較這個(gè)區(qū)域勸導(dǎo)仿射控制器和一個(gè)模糊的可變結(jié)構(gòu)的控制器通過(guò)應(yīng)用一個(gè)倒立擺控制。 </p><p> 我們將從系統(tǒng)設(shè)計(jì)開(kāi)始;分析二級(jí)倒立擺的控制行為。隨后我們將展示如何為系統(tǒng)設(shè)計(jì)一個(gè)模糊控制裝 置。我們將描繪一個(gè)控制曲線當(dāng)使用模糊控制裝置時(shí)它與一個(gè)常規(guī)控制器是如何的不同。最后,我們將討論 如何使用這個(gè)曲線去定義
19、標(biāo)志還有變量的隸屬函數(shù),還有就是如何為控制器創(chuàng)立一套規(guī)則。</p><p> “倒立擺、分析、設(shè)計(jì)和執(zhí)行”是由一個(gè)MATLAB方程和內(nèi)容的收藏的,還有SIMULINK模型,對(duì)分析倒立 擺系統(tǒng)和設(shè)計(jì)控制系統(tǒng)是很有用的。這個(gè)報(bào)道MATLAB文件收藏是由少量的控制系統(tǒng)分析的實(shí)際任務(wù)而發(fā)展的,設(shè)計(jì)和發(fā)展實(shí)際問(wèn)題。這分派 的倒立擺的問(wèn)題是一個(gè)控制系統(tǒng)的實(shí)驗(yàn)室工作的一部分。</p><
20、;p> 倒立擺是最重要最經(jīng)典的控制工程問(wèn)題中的一個(gè)。帚平衡(車載的倒立擺)是一個(gè)著名的非線形例子, 不穩(wěn)定的控制問(wèn)題。這個(gè)問(wèn)題越來(lái)越復(fù)雜當(dāng)一個(gè)柔韌的帚代替一個(gè)剛硬的帚被使用。復(fù)雜的問(wèn)題的真實(shí)度和 難度在控制中隨著彈性而增長(zhǎng)。這個(gè)問(wèn)題已經(jīng)引起調(diào)度工程師的興趣并展開(kāi)研究。</p><p> 倒立擺的控制是一個(gè)控制工程的方案基于火箭的飛行模擬或者導(dǎo)彈飛行的初始狀態(tài)。這個(gè)學(xué)習(xí)的目的是
21、0;穩(wěn)定倒立擺這樣小車的位置在軌道上被控制得快速和準(zhǔn)確以使擺在這一裝置下始終垂直在它的倒立位置。</p><p> 這個(gè)實(shí)際的運(yùn)動(dòng)是一個(gè)分析的表現(xiàn)還有實(shí)際的執(zhí)行在解決問(wèn)題的結(jié)果中在本文中,“非線形和不穩(wěn)定系統(tǒng)的堅(jiān)固的控制器:“倒立擺”和“柔韌的帚平衡”,其中這個(gè)復(fù)雜問(wèn)題分析和一個(gè)簡(jiǎn)單的有效的解決方案被引出法定軌道通過(guò)確定的精確性是機(jī)器控制的一個(gè)主要任務(wù)??刂仆ǔJ腔谝粋€(gè)系統(tǒng)的數(shù)學(xué)模型。模型不是一 個(gè)
22、準(zhǔn)確的實(shí)體表現(xiàn),模型的誤差是不可避免的。此外,我們可以特意使用一個(gè)簡(jiǎn)化的模型。在這篇論文中, 構(gòu)造好的和未構(gòu)造好的不確定因素是主要的興趣所在,也就是說(shuō)模型的誤差導(dǎo)致參數(shù)變化和未模型化的模式 ,尤其是摩擦力和敏感元件的力度,被忽視的時(shí)間延遲等等。</p><p> 不正確的模型和高性能的需求要求控制器非常堅(jiān)固?;?刂破?SMC)是基于變結(jié)構(gòu)控制使用的如果模型結(jié)構(gòu)中的錯(cuò)誤在已知的范圍內(nèi)躍進(jìn)。然
23、而,一個(gè)SMC有一些缺點(diǎn),涉及控制輸入信號(hào)的振動(dòng)。通常這個(gè)現(xiàn)象是令人不快的,它會(huì)引起額外的控制作用從而導(dǎo)致激勵(lì)者穿戴的增加和未建模動(dòng)力學(xué)的刺激。 </p><p> 削弱這個(gè)令人不快的效果的嘗試導(dǎo)致堅(jiān)固的特性的變化。這是一個(gè)眾所周知的難題并且廣泛的在文獻(xiàn)中經(jīng)過(guò)處理。為了在繼電器控制中獲得濾波中斷滑??刂破鞯姆桨敢呀?jīng)被提出了。</p><p> 另外一個(gè)重要的論點(diǎn)限定了SMC的實(shí)際應(yīng)用性
24、就是創(chuàng)新的控制定律導(dǎo)致上面的不確定因素的范圍。在實(shí)踐中通常大部分最差的案例在控制定律下執(zhí)行確沒(méi)有發(fā)生并且作為結(jié)果的大的控制輸入變得不必要和不經(jīng)濟(jì)的。</p><p> 在這篇論文中我們提出一個(gè)機(jī)電系統(tǒng)中分散震動(dòng)控制器的設(shè)計(jì)方法除了滑模震動(dòng)控制器結(jié)構(gòu)和干擾轉(zhuǎn)矩的估算。估算的精確性是這個(gè)計(jì)劃中最中堅(jiān)的評(píng)定參數(shù),與上面的不確定的范圍正好相反。因此,在評(píng)估的精確 性中控制一些誤差動(dòng)力學(xué)的條件減少了一些不確定性
25、(就如同在傳統(tǒng)的SMC中)。結(jié)果在沒(méi)有超越傳統(tǒng)的控 制中是一個(gè)較好的跟蹤精度。 </p><p> 模糊控制裝置的實(shí)驗(yàn)的健全的性質(zhì)難以用理論去證明它們的綜合仍然是一個(gè)未解決的問(wèn)題。最終控制器的非線性性質(zhì)來(lái)源于各級(jí)模糊控制的控制器,顯著地逆模糊化方法(諸如中心區(qū))。通常,模糊控制器有一個(gè)區(qū)域勸導(dǎo)的性質(zhì)是模糊化級(jí)數(shù)給的輸入空間。本地控制設(shè)計(jì)這些區(qū)域結(jié)合成集使最終的全球控制實(shí)現(xiàn)。一個(gè)級(jí)
26、0;數(shù)空間的分割可以在控制器有區(qū)域勸導(dǎo)的常數(shù)參數(shù)中找到。此外,每個(gè)模糊控制器調(diào)整參數(shù)(即形狀以及輸 入輸出的變量的值的隸屬函數(shù))會(huì)在同一時(shí)間在某些區(qū)域影響參數(shù)的值。在特殊情況下開(kāi)關(guān)線將相平面分成 一個(gè)區(qū)域那個(gè)區(qū)域中控制是正的反之另一邊是負(fù)的,模糊控制器可以視為一個(gè)可變結(jié)構(gòu)的控制器。這類的模 糊控制器可以吸收到可變結(jié)構(gòu)控制器邊界層,其中穩(wěn)定性定理存在,而是一個(gè)非線形開(kāi)關(guān)面。 </p><
27、p> 我們將從系統(tǒng)設(shè)計(jì)開(kāi)始,分析二級(jí)倒立擺的控制行為。隨后我們將展示如何為系統(tǒng)設(shè)計(jì)一個(gè)模糊控制裝 置。我們將描繪一個(gè)控制曲線當(dāng)使用模糊控制裝置時(shí)它與一個(gè)常規(guī)控制器是如何的不同。最后,我們將討論 如何使用這個(gè)曲線去定義標(biāo)志還有變量的隸屬函數(shù),還有就是如何為控制器創(chuàng)立一套規(guī)則。 </p><p> 在任何控制問(wèn)題的陳述中,在控制的設(shè)計(jì)發(fā)展中現(xiàn)行的設(shè)備和數(shù)學(xué)模型之間總是有著明顯的差異。這種
28、 失諧也許應(yīng)歸于非建模動(dòng)力學(xué)中,通過(guò)一個(gè)簡(jiǎn)潔的模型系統(tǒng)參數(shù)或者復(fù)雜設(shè)備的近似值會(huì)發(fā)生變化。工程師 必須確定作為結(jié)果的控制器在實(shí)際中有能力制造必須的性能指標(biāo)不管是設(shè)備還是模型的失諧。這已經(jīng)導(dǎo)致了 在所謂堅(jiān)固的操縱方法的發(fā)展產(chǎn)生一個(gè)強(qiáng)烈的興趣此方法能設(shè)法解決這個(gè)問(wèn)題。堅(jiān)固的操縱控制器設(shè)計(jì)的一 個(gè)特殊的方法就是所謂的滑??刂品椒ā?lt;/p><p> 滑??刂剖强勺兘Y(jié)構(gòu)控制系統(tǒng)(
29、VSCS)的一個(gè)特殊的類型。一個(gè)VSCS是由一套反饋控制定律和一個(gè)決策規(guī)則表現(xiàn)出來(lái)的。決策規(guī)則,條件是開(kāi)關(guān)方程,將輸入估計(jì)成正確的系統(tǒng)特性并且產(chǎn)生一個(gè)輸出精確的反饋控制器使之可以及 時(shí)地被使用。一個(gè)可變結(jié)構(gòu)系統(tǒng),被認(rèn)為是各子系統(tǒng)的結(jié)合其中每個(gè)子系統(tǒng)有一個(gè)確定的控制結(jié)構(gòu)并且結(jié)果是對(duì)系統(tǒng)結(jié)構(gòu) 給定的區(qū)域是適用的。介紹這個(gè)額外的系統(tǒng)的復(fù)雜性的優(yōu)勢(shì)之一就是可以將系統(tǒng)中復(fù)合結(jié)構(gòu)的有用的性質(zhì)組合起來(lái)。此外,該系統(tǒng)可能被設(shè)計(jì)成擁有
30、新的性質(zhì)而且不是單獨(dú)地應(yīng)用與復(fù)合結(jié)構(gòu)的某一方面。 前蘇聯(lián)在20世紀(jì)50年代末最先開(kāi)始利用這些自然的想法。 </p><p> 在滑模控制中,VSCS被設(shè)計(jì)成操作并強(qiáng)迫系統(tǒng)狀態(tài)位于鄰近的開(kāi)關(guān)方程中。這種方法有兩個(gè)主要的優(yōu)點(diǎn):第一,系統(tǒng)的動(dòng)態(tài)性能適應(yīng)于開(kāi)關(guān)方程的特殊選擇;第二,閉環(huán)響應(yīng)完全不受不確定的特殊種類的影響。后面的恒定性質(zhì)明顯地使方法論在堅(jiān)固的操縱方法中有一個(gè)適當(dāng)?shù)暮钸x對(duì)象。另外,立即指定性能的能力使得滑模
31、控制從設(shè)計(jì)觀點(diǎn)看變得有價(jià)值。 </p><p> 滑模設(shè)計(jì)處理兩種結(jié)構(gòu)組成。第一個(gè)包括開(kāi)關(guān)方程的設(shè)計(jì)所以滑行的動(dòng)作滿足設(shè)計(jì)規(guī)范。第二個(gè)涉及到 控制規(guī)則的選擇該規(guī)則將使開(kāi)關(guān)方程在系統(tǒng)狀態(tài)中變得有價(jià)值。注意這個(gè)控制規(guī)則并不是必然不連續(xù)的。 </p><p> 我們將提供讀者一個(gè)徹底的滑??刂祁I(lǐng)域的基礎(chǔ)并且適合大學(xué)生使用的經(jīng)典控制理論和一寫狀態(tài)空間方 法的知識(shí)的基礎(chǔ)知識(shí)。
32、從這些基礎(chǔ)中,許多先進(jìn)的理論的成果在不斷發(fā)展。因而發(fā)生的設(shè)計(jì)規(guī)程強(qiáng)調(diào)需要用 Matlab軟件。充分的處理過(guò)的設(shè)計(jì)實(shí)例是一個(gè)額外的性質(zhì)的指示。工業(yè)的案例學(xué)習(xí),介紹了滑??刂茍?zhí)行的 成果,被用于闡述成功的實(shí)際的理論上的應(yīng)用。</p><p><b> 原文一:</b></p><p> The Inverted Pendulum System<
33、;/p><p> The inverted pendulum system is a popular demonstration of using feedback control to stabilize an open-loop unstable system. The first solution to this problem was described by Roberge [1] in his aptl
34、y named thesis, "The Mechanical Seal." Subsequently, it has been used in many books and papers as an example of an unstable system.</p><p> Siebert [2, pages 177~182] does a complete analysis of t
35、his system using the Routh Criterion, by multiplying out the characteristic equation as a polynomial of s and studying the coefficients. Although correct, this approach is unnecessarily abstruse. This system is the ideal
36、 root-locus analysis example.</p><p> Figure 1: Geometry of the inverted pendulum system</p><p> Consider the inverted pendulum system in Figure 1. At a pendulum angle of µ from vertical,
37、 gravity produces an angular acceleration equal to , and a cart acceleration of θx produces an angular acceleration of . Writing these accelerations as an equation of motion, linearizing it, and taking its Laplace Transf
38、orm, we produce the plant transfer function G(s), as follows:</p><p> where the time constant is defined as .This transfer function has a pole in the right half-plane, which is consistent with our expectat
39、ion of an unstable system.</p><p> We start the feedback design by driving the cart with a motor with transfer function M(s) and driving the motor with a voltage proportional to the angle µ. Including
40、the familiar motor transfer function</p><p> Figure 2: Root-locus plot of pendulum and motor, L(s) = M(s)G(s)</p><p> with the plant G(s), we get a root locus with one pole that stays in the r
41、ight half-plane. Using normalized numbers, we get the root locus plot as is seen in Figure 2.</p><p> In order to stabilize the system, we need to get rid of the remaining zero at the origin so that the loc
42、us from the plant pole on the positive real axis moves into the left half-plane. Thus our compensator must include a pole at the origin. However, we should balance the added compensator pole with an added zero, so that t
43、he number of poles less the number of zeros remains equal to two, leaving the root-locus asymptotes at ±90° (otherwise, the asymptotes would be ±180° and±60° which eventually l</p>&l
44、t;p> and we assume that . The block diagram of the system is shown in Figure 3,and the root locus plot becomes as in Figure 4 (note that since there is an inversion in G(s),we draw the block diagram with a positive s
45、umming junction).</p><p> Figure 3: Block diagram of the compensated system</p><p> Figure 4: Root-locus plot of pendulum with integrating compensator,</p><p> L(s) = K(s)M(s)G(s
46、)</p><p> Siebert explains that a physical interpretation for the need for this integrator arises from the fact that we are using a voltage-controlled motor. Without the integrator a constant angular error
47、only achieves a constant cart velocity, which is not enough to make the pendulum upright. In order to get "underneath" the pendulum, the cart must be accelerated;therefore, we need the integrator.</p>&l
48、t;p> This system is now demonstrably stable, however, the root locus is awfully close to the jω-axis. The resulting closed-loop system has a very low margin of stability and would have very oscillatory responses to d
49、isturbances. An easy fix to this problem is to decrease the motor time constant with velocity feedback, which moves the centroid of the asymptotes to the left. The root-locus plot of this system is seen in Figure 5.</
50、p><p> Figure 5: Root-locus plot of pendulum with improved motor time constant</p><p> Unfortunately, there is still a problem with this system, albeit subtle. Consider the closed-loop transfer f
51、unction from µc(t) to x(t) in Figure 3.</p><p> The poles at the origin makes the system subject to drift. With these integrators, Murphy's Law guarantees that the time response of x(t) will grow w
52、ithout bound, and the cart will quickly run out of track.</p><p> The solution is positive feedback around the motor and compensator. This feedback loop has the effect of moving the poles off the origin, th
53、us preventing the pole/zero cancellations that are the source of this uncontrollable mode. The root-locus plot of the corrected system appears in Figure 6.</p><p> Figure 6: Root-locus plot of pendulum with
54、 position compensation</p><p> Siebert notes that this positive feedback causes the motor to initially make deviations in x(t) worse, but that this behavior is the desired effect. When balancing a ruler in
55、your hand,to move the ruler to the right, you must first move your hand sharply to the left, pointing the ruler to the right, so that when you catch the ruler, you have moved both your hand and ruler to the right.</p&
56、gt;<p> Physically, the pendulum is stabilized at a small angle from vertical, such that it always points toward the center of the track. Thus, the pendulum is always "falling" toward the center of the
57、track, and the only possible equilibrium is a vertical pendulum in the middle of the track. If the cart is to the left of the track center, the control will stabilize the pendulum pointing to the right, such that it then
58、 falls a little more to the right. To catch the falling pendulum, the cart must move t</p><p><b> 原文二:</b></p><p> The inverted pendulum</p><p> Key words: inverted
59、160;pendulum, modeling, PID controllers,LQRcontrollers</p><p> What is an Inverted Pendulum? Remember when you were a child and you tried to balance a broom stick or baseball bat on your index finger o
60、r the palm of your hand? You had to constantly adjust the position of your hand to keep the object upright. An Inverted Pendulum does basically the same thing. However, it is limited in that it only moves in one dimensio
61、n, while your hand could move up, down, sideways, etc. Check out the video provided to see exactly how the Inverted Pendulum works. </p><p> An inverted pendulum is a physical device consisting in a cylind
62、rical bar (usually of aluminum) free to oscillate around a fixed pivot. The pivot is mounted on a carriage, which in its turn can move on a horizontal direction. The carriage is driven by a motor, which can exert on
63、 it a variable force. The bar would naturally tend to fall down from the top vertical position, which is a position of unsteady equilibrium. </p><p> The goal of the
64、;experiment is to stabilize the pendulum (bar) on the top vertical position. This is possible by exerting on the carriage thr
65、ough the motor a force which tends to contrast the 'free' pendulum dynamics. The correct force has to be calculated m
66、easuring the instant values of the horizontal position and the pendulum angle (obtained e.g. through two potentiometers). </p><p
67、> The system pendulum cart motor can be modeled as a linear system if all the parameters are known (masses, lengths, etc. ), in order to find a controller to stabilize it. If not all the parameters are know
68、n, one can however try to 'reconstruct' the system parameters using measured data on the dynamics of the pendulum. </p><p> The inverted pendulum is a traditional exam
69、ple (neither difficult nor trivial) of a controlled system. Thus it is used in simulations and experiments to show the perfor
70、mance of different controllers (e.g. PID controllers, state space controllers, fuzzy controllers....). </p><p> The Real-Time Inverted Pendu
71、lum is used as a benchmark, to test the validity and the performance of the software underlying the state-space controller algorithm,
72、160;i.e. the used operating system. Actually the algorithm is implement form the numerical point of view as a set of mutually co-operating tasks, which are periodically a
73、ctivated by the kernel, and which perform different calculations. The way how these tasks are activated (e.g. The activation order) is called scheduling of the tasks.
74、0;It is</p><p> Modeling an inverted pendulum.Generally the inverted pendulum system is modeled as a linear system, and hence
75、the modeling is valid only for small oscillations of the pendulum. </p><p> With the use of trapezoidal input membership
76、 functions and appropriate composition and inference methods, it will be shown that it is possible to obtain rule membership
77、functions which are region-wise affine functions of the controller input variable. We propose a linear defuzzification algorithm that keeps this regio
78、n-wise affine structure and yields a piece-wise affine controller. A particular and systematic parameter tuning method will be given which allows turning this controller into a vari</p>
79、;<p> We will begin with system design; analyzing control behavior of a two-stage inverted pendulum. We will then show how to design a fuzzy controller
80、for the system. We will describe a control curve and how it differs from that of conventional controllers when using a fuzzy controller. Finally, we will discuss how to use this curve to def
81、ine labels and membership functions for variables, as well as how to create rules for the controller. </p><p> In the formulation&
82、#160;of any control problem there will typically be discrepancies between the actual plant and the mathematical model developed f
83、or controller design.This mismatch may be due to unmodelled dynamics, variation in system parameters or the approximation of complex plant behavior by a straightforward model.The engin
84、eer must ensure that the resulting controller has the ability to produce the required performance levels in practice despite such plant/model mismatches. This has led to a</p>
85、;<p> The Inverted Pendulum is one of the most important classical problems of Control Engineering. Broom Balancing (Inverted Pendulum on
86、;a cart) is a well known example of nonlinear,unstable control problem. This problem becomes further complicated when a flexible broom, in place of
87、60;a rigid broom, is employed. Degree of complexity and difficulty in its control increases with its flexibility. This problem has been a research interest
88、0;of control engineers. </p><p> Control of Inverted Pendulum is a Control Engineering project based on the filg
89、ht simulation of rocket or missile during the initial stages of flight. The aim of this study is to stabilize the Inverted Pendulum such that the position of the car
90、riage on the track is controlled quickly and accurately so that the pendulum is always erected in its inverted position during such movements. </p><p> This practical exercise is a
91、 presentation of the analysis and practical implementation of the results of the solutions presented in the papers, “Robust Contro
92、ller for Nonlinear & Unstable System: Inverted Pendulum” and “Flexible Broom Balancing” , in which this complex problem
93、;was analyzed and a simple yet effective solution was presented.</p><p> Prescribed trajectory tracking with certain accuracy is a
94、 main task of robotic control. The control is often based on a mathematical model of the system. This model is never an exact representation of reality, since modeling errors are inevit
95、able. Moreover, one can use a simplified model on purpose. In this paper, the structured and unstructured uncertainties are of primary interest, i.e., the modeling error due to the parameters var
96、iation and unmodeled modes, especially the friction and sensor </p><p> The erroneous model and the demand for high performance require the
97、160;controller to be robust. The sliding mode controllers(SMC) based on variable structure control can be used if the
98、inaccuracies in the model structure are bounded with known bounds. However, an SMC has some disadvantages, related to chattering of the control input signal. Often this phenomenon is undesirable, since it
99、causes excessive control action leading to increase wear of the actuators and to excitation of unmodeled dynami</p><p> The attempts to attenuate this undesirable eff
100、ect result in the deterioration of the robustness characteristics. This is a well-known problem and widely treated in the literatu
101、re. In order to obtain smoothing in the bang-bang typed discontinuities of the sliding mode controller different schemes have been suggested. </p><p> Another import
102、ant issue limiting the practical applicability of SMC is the over conservative control law due to the upper bounds of th
103、e uncertainties. In practice most often the worst case implemented in control law does not take place and the resulting large control inputs become unnecessary and unecon
104、omical. </p><p> In this paper we suggest an approach to the design of decentralized motion controllers for electromechanical
105、systems besides the sliding mode motion controller structure and disturbance torque estimation. The accuracy of the estimation is the critical paramet
106、er for robustness in this scheme, as opposed to the upper bounds of the perturbations themselves. Consequently, the driving terms of the error dynamics
107、0;are reduced from the uncertainties (as in the conventional SMC) to the accuracy intheir e</p><p> Experimental robustness properties o
108、f fuzzy controllers remain theoretically difficult to prove and their synthesis is still an open problem. The non-linear structure of t
109、he final controller is derived from all controllers at the different stages of fuzzy control, particularly from common defuzzification methods (such as Centre
110、160;of Area). In general, fuzzy controllers have a region-wise structure given the partition of its input space by the fuzzification stage. Local
111、;controls designed in these r</p><p> We will begin with system design; analyzing control behavior of a two-stage inverted pendulum. We
112、will then show how to design a fuzzy controller for the system. We will describe a control curve and how it differs from that
113、 of conventional controllers when using a fuzzy controller. Finally, we will discuss how to use this curve to define labels and membership f
114、unctions for variables, as well as how to create rules for the controller. </p><p> In the formulation of any control pro
115、blem there will typically be discrepancies between the actual plant and the mathematical model developed for controller design.This
116、60;mismatch may be due to unmodelled dynamics, variation in system parameters or the approximation of complex plant behavior by a str
117、aightforward model.The engineer must ensure that the resulting controller has the ability to produce the required performance levels in practice despite such
118、60; plant/model mismatches. This has led to</p><p> Sliding mode control is a particular type of Variable Structure Control System&
119、#160;(VSCS). A VSCS is characterized by a suite of feedback control laws and a decision rule. The decision rule, termed the s
120、witching function, has as its input some measure of the current system behavior and produces as an output the particular feedback&
121、#160;controller which should be used at that instant in time. A variable structure system,which may be regarded as a combination of subsystems wh
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 單級(jí)倒立擺畢業(yè)設(shè)計(jì)論文
- 畢業(yè)設(shè)計(jì)(論文)外文資料翻譯----倒立擺
- 機(jī)械畢業(yè)設(shè)計(jì)英文外文翻譯-倒立擺系統(tǒng)
- 倒立擺外文翻譯
- 倒立擺系統(tǒng)畢業(yè)設(shè)計(jì)
- 畢業(yè)設(shè)計(jì)-二級(jí)倒立擺建模
- 外文翻譯--倒立擺原稿
- 倒立擺畢業(yè)設(shè)計(jì)-外文翻譯(適用于畢業(yè)論文外文翻譯+中英文對(duì)照)
- 倒立擺畢業(yè)設(shè)計(jì)開(kāi)題報(bào)告
- 倒立擺畢業(yè)設(shè)計(jì)-開(kāi)題報(bào)告
- 倒立擺的控制外文翻譯
- 倒立擺的控制外文翻譯
- 倒立擺的控制外文翻譯
- 倒立擺專家控制研究畢業(yè)設(shè)計(jì)
- 畢業(yè)論文-單級(jí)倒立擺的pid控制
- 倒立擺的控制外文翻譯.doc
- 倒立擺的控制外文翻譯.doc
- 單置倒立擺課程設(shè)計(jì)
- 倒立擺畢業(yè)設(shè)計(jì)外文翻譯---multi-agent旋翼試驗(yàn)臺(tái)控制系統(tǒng)設(shè)計(jì)
- 外文翻譯--倒立擺的平衡器
評(píng)論
0/150
提交評(píng)論