版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p> 南 京 理 工 大 學(xué)</p><p> 畢業(yè)設(shè)計(jì)(論文)外文資料翻譯</p><p> 學(xué)院(系): 電子工程與光電技術(shù)學(xué)院 </p><p> 專 業(yè): 通信工程 </p><p> 姓 名:
2、 </p><p> 學(xué) 號(hào): </p><p> 外文出處: 1. IEEE TRANSACTIONS ON </p><p> ANTENNAS AND PROPAGATION, &
3、lt;/p><p> VOL. 53,NO.9, SEPTEMBER 2005 </p><p> 2. IEEE TRANSACTIONS ON </p><p> MICROWAVE THEORY AND
4、 </p><p> TECHNIQUES, VOL. 53,NO.6, </p><p> JUNE 2005 </p><p> 附 件: 1.外文資料翻譯譯文一; </p><p> 2.外文資料翻譯譯文二;
5、 </p><p> 3.外文原文一; </p><p> 4.外文原文二; </p><p> 注:請(qǐng)將該封面與附件裝訂成冊(cè)。</p><p> 附件1:外文資料翻譯譯文一</p><p> 在單封裝超寬波段無線
6、通信中使用LTCC技術(shù)的平面天線</p><p> 作者:Chen Ying and Y.P.Zhang</p><p> 摘要:此通訊提出了一個(gè)使用低溫度共燒陶瓷技術(shù)的平面天線用于超寬頻帶(UWB)無線通信的單封裝解決方案。該天線具有一個(gè)通過微帶線反饋的橢圓形的輻射體。該輻射體和微帶線擁有與其它UWBR電路相同的接地板。實(shí)驗(yàn)結(jié)果表明原型天線已達(dá)到110.9%的帶寬,從1.34到5.4
7、3 dBi的增益,寬模式和頻率從3到10.6GHz的相對(duì)恒定的群延遲。更多地還發(fā)現(xiàn),標(biāo)準(zhǔn)化天線輻射功率譜密度基本符合FCCS對(duì)于室內(nèi)UWB系統(tǒng)的發(fā)射限制。</p><p> 關(guān)鍵詞:低溫共燒陶瓷(LTCC),平面天線,超寬頻帶(UWB)。</p><p><b> 一、引言</b></p><p> 現(xiàn)在,發(fā)展用于窄范圍高速度的無線通信網(wǎng)
8、絡(luò)的超寬頻帶(UWB)無線電是一個(gè)研究熱點(diǎn)。超寬帶無線電利用一個(gè)7.5 GHz的超寬帶寬來交換信息。使用這樣大的帶寬,在使U超寬帶無線電發(fā)揮它最大的作用上存在一些問題.其中的一個(gè)主要問題是用于移植系統(tǒng)的超寬帶天線的設(shè)計(jì)。好的超寬帶天線應(yīng)具有較低的回波損耗,全向輻射模式,從3.1至10.6 GHz的超寬帶寬下的高效率,同時(shí)也應(yīng)當(dāng)滿足FCCS規(guī)定的發(fā)射限制。現(xiàn)在已經(jīng)有一些超寬帶天線,如鉆石偶極子和互補(bǔ)縫隙天線。它們已被證明適用于超寬帶無線電
9、[1] - [4]。介質(zhì)芯片天線最近也被Taiyo Yuden美國研究與發(fā)展中心(TRDA)證明可用于超寬帶天線。這些UWB天線的物理體積小,但仍然是離散的。盡管TRDA的芯片天線具有非常小的尺寸,卻沒有調(diào)查表明它可以與射頻電路的接地板整合從而實(shí)現(xiàn)單包裝解決方案。此外,TRDA天線依賴Taiyo Yuden的陶瓷材料和多層疊加,這些可能會(huì)導(dǎo)致大規(guī)模生產(chǎn)下更高的成本[7]。在這樣的情況下,一種相當(dāng)簡單地低溫共燒陶瓷(LTCC)平面天線得以
10、設(shè)計(jì)和測試。在安裝如單片射頻電路和微波集成電路等有源器件的情況下,LTCC工藝中能</p><p> 二、LTCC平面UWB天線的說明</p><p> 有很多LTCC邊帶可用于單封裝UWB無線電。我們選擇了Dupont 951來實(shí)現(xiàn)我們的產(chǎn)品。Dupont 951在超寬頻帶上具有7.8的相對(duì)介電常數(shù)和0.001 ~ 0.002損耗因數(shù)。圖一的(a)表示LTCC平面超寬帶天線的最高層的
11、配置。如圖所示,該天線是橢圓形的,短軸11毫米,長軸17毫米。由長41毫米寬3毫米的微帶線饋電。這個(gè)LTCC單封裝的尺寸為66 * 50 * 1立方毫米。天線的位置使得其余的封裝表面可以很好地容納其他的超寬帶射頻電路。該天線的向外取向允許使用微帶線來連接射頻前端電路。LTCC平面超寬帶天線的底層結(jié)構(gòu)如圖一的(b)所示,天線的接地板與其它的超寬帶射頻電路的接地板相連。天線的接地板有一個(gè)33*25平方毫米的封裝。其他的超寬帶射頻電路的接地板
12、為50*41平方毫米的矩形。</p><p> 三、結(jié)果與討論 在這部分中,所測量的LTCC平面超寬頻帶天線性能是被驗(yàn)證的。所有的測量都在微波暗室中使用HP8722ES網(wǎng)絡(luò)分析儀在2至12 GHz的頻率范圍下進(jìn)行。</p><p> 回波損耗和輻射特性</p><p> 如圖2(a)中所示,測得的從3到10.6 GHz的回波損耗幅度低于-10分貝的閾
13、值。這表明天線已經(jīng)實(shí)現(xiàn)帶寬7.6 GHz的要求(7.6/6.85 = 110.9%)。 如圖3-5所示在3.5,6.85和10.1 GHz測得的遠(yuǎn)場輻射圖下的兩個(gè)主要的削減。 (phi = 0°and phi = 90°)。對(duì)于這三個(gè)頻率,Phi= 0°輻射圖的削減在0°和180°輻射最強(qiáng),在90°和270°輻射最弱。對(duì)這三個(gè)頻率,phi = 90°
14、下的輻射圖的削減空值在0°, 90°, 180°, 和270°。這表明LTCC平面超寬帶天線在超寬頻帶上有相似的輻射圖。由于所用的接地板有限,測得的輻射圖在90°and 270°有淺的空值。測得的結(jié)果表明,LTCC平面超寬帶天線該方位平面具有準(zhǔn)全向輻射圖。</p><p> 如圖6所示,所測天線在phi=theta=0°方向的增益值。測得在3
15、.1GHz的增益為-1.34 dBi,在6.85GHz的增益為4.2 dBi,在10.6 GHz的增益為1.76 dBi。 如圖7所示,測得的群延遲與頻率的關(guān)系。如圖所示,在從2到12 GHz的整個(gè)頻帶群時(shí)延差在3.5納秒內(nèi)。小的群延遲差能確保天線在傳輸過程中波形失真時(shí)保持良好的性能</p><p> 2、天線接地板的作用 平面單極天線已被證明適用于寬阻抗帶寬[12]。天線接地板的變動(dòng)可將平面
16、縫隙天線修改為平面單極天線。變動(dòng)天線接地板效果是值得研究的。 將測得的回波損耗與對(duì)應(yīng)的從3.1到10.6 GHz頻率作關(guān)系圖,如圖2(b)所示。它也表明了超寬頻帶下具有很寬的阻抗帶寬寬度?;夭〒p耗可以通過調(diào)整輻射基元的尺寸進(jìn)一步提高。3.5, 6.85和10.1 GHz下所測量的輻射模型在無天線接地板的情況下也繪制在圖3?圖5中,包括了phi = 0°和phi = 90°兩種削減情況。含和不含接地板這兩種情況
17、下的輻射圖的形狀也非常相似。</p><p> 四、總結(jié) 與其它射頻電路含有共同的接地板的LTCC平面超寬帶天線已被研究作為超寬帶射頻的單封裝解決方案。現(xiàn)已證明該天線可實(shí)現(xiàn)從3到10.6GHz的7.6 GHz超寬帶寬。還證實(shí)了該天線在超寬帶寬的方位平面上具有近似的全方位輻射。同時(shí)也發(fā)現(xiàn)在2.6到3GHz之外的超寬頻帶上,LTCC平面超寬帶天線的歸一化輻射功率譜密度是在FCCS規(guī)定的室內(nèi)超寬帶系統(tǒng)的輻射限
18、值內(nèi)。測得的天線增益在3.1GHz為1.34dBi,在6.85GHz為4.2dBi,在10.6GHz為1.76dBi。測得的群延遲從2至12 GHz在3.5 ns范圍內(nèi)波動(dòng)。我們的實(shí)驗(yàn)室正在對(duì)LTCC平面超寬帶天線和其它超寬帶射頻電路間的影響作進(jìn)一步的研究。</p><p> 附件2:外文資料翻譯譯文二</p><p> 基于空間填充的寬帶圓極化縫隙天線</p><
19、p> 作者:Hani A.Ghali,Member,IEEE,and Tarek A.Moselhy</p><p> 摘要:基于空間填充曲線的使用,寬帶圓極化微帶縫隙天線被提出。寬帶性能在不增加整個(gè)天線尺寸的前提下通過合并幾種不同的縮減規(guī)模的“空間填充縫隙天線的“島型”合成物來實(shí)現(xiàn)。該技術(shù)提供了對(duì)應(yīng)廣泛頻率的不同的諧振槽長度。通過合并三種縮減規(guī)模的第二迭代復(fù)合摩爾縫隙天線可開發(fā)寬頻帶縫隙天線。這種天線
20、具有的帶寬(VSWR < 2)為87.6%,約4.5千兆赫,比起方形環(huán)縫隙天線高出因數(shù)13.5,比起嵌套方形環(huán)縫隙天線高出因數(shù)3。已開發(fā)出的縫隙天線最大增益為5 dB,總面積為3 * 3 cm2 。此外,通過在所提出的縫隙天線中引入不對(duì)稱特性(將所有平行縫隙結(jié)構(gòu)中的一邊和所有的內(nèi)部縫隙替代成接地板)可實(shí)現(xiàn)圓極化。這種圓極化縫隙天線的3-dB軸比帶寬為22%且VSWR<2。所提出的縫隙天線通過使用MMBFW(moment-me
21、thod-based full-wave)電磁模擬器實(shí)現(xiàn)了設(shè)計(jì)和仿真設(shè)計(jì)。研制出的天線的測量值與仿真結(jié)果相吻合。</p><p> 關(guān)鍵詞:寬帶天線,圓極化天線,不規(guī)則天線,縫隙天線,空間填充曲線。</p><p> 一、 引言 寬帶天線設(shè)計(jì)需解決高頻高速數(shù)據(jù)速率的無線通信系統(tǒng)中面臨的挑戰(zhàn)性的問題。印刷天線可以方便地與單片微波集成電路集成,是一種成本低,低調(diào)高效的解決方案。在不
22、同的印刷天線的拓?fù)浣Y(jié)構(gòu)中,縫隙天線被認(rèn)為是最適用于寬帶應(yīng)用。30%-63%范圍的阻抗帶寬已有報(bào)道[1] - [6]。</p><p> 盡管微帶饋電縫隙天線結(jié)構(gòu)不被認(rèn)為是寬帶拓?fù)浣Y(jié)構(gòu),由于其可能同時(shí)用于寬波段處理和圓極化,目前受到很多的研究和關(guān)注。最近,據(jù)報(bào)告[7]一個(gè)寬帶微帶饋電雙向半圓縫隙天線具有45.8%的帶寬。這種結(jié)構(gòu)具有的帶寬比一個(gè)普通的圓環(huán)縫隙天線的大7.3倍。另一種已研制出的結(jié)構(gòu),應(yīng)用了微帶饋電多
23、諧振單縫隙天線,能提供的帶寬為約60%[8]。</p><p> 另一方面,[9]中提出圓極化微帶饋電方形環(huán)縫隙天線。其設(shè)計(jì)是在方形環(huán)縫隙結(jié)構(gòu)中引入一個(gè)迂回縫隙以實(shí)現(xiàn)不對(duì)稱,同時(shí)在此以45°放置饋線。該天線具有約4.3%的3-dB軸比帶寬。</p><p> 近日,為了結(jié)構(gòu)的小型化,“開放式結(jié)構(gòu)”空間填充曲線被提出用于發(fā)展共面波導(dǎo)(CPW)饋電的不規(guī)則縫隙天線[10]。為了這
24、個(gè)目的,僅限在面積減小的情況下,由一個(gè)具有相同電氣特性的空間填充曲線代替常規(guī)的縫隙。二次迭代謝爾賓斯基縫隙天線工作在約2.4 GHz。它體現(xiàn)了一種面積被限制在1.8* 1.8平方厘米(0.144?o*0.144?o)的緊湊的設(shè)計(jì),其帶寬為5%,增益為2.25 dB。另一方面,第一迭代的閔可夫斯基不規(guī)則縫隙天線的帶寬為35%,增益為5.4dB,并且面積被限制在5*5平方厘米。</p><p> 在本文中,“島型”
25、空間填充曲線被用于發(fā)展寬帶和圓極化縫隙天線。不同于通常那些為了無源微波器件和天線小型化的空間填充曲線的應(yīng)用[11] - [13],我們所提出的寬頻帶天線的設(shè)計(jì)是基于“島型”空間填充曲線的組合物。在原始面積相同的情況下,能實(shí)現(xiàn)在寬頻率范圍內(nèi)提供不同的諧振縫隙長度。</p><p> 已開發(fā)出的天線的拓?fù)浣Y(jié)構(gòu)是通過合并那些改良空間填充縫隙天線的降尺度副本得到的。這種改良后的縫隙天線由兩個(gè)正交的單片“島型”空間填充結(jié)
26、構(gòu)的副本組成。雖然改良縫隙天線和最終的天線不是空間填充結(jié)構(gòu),但它們是基于空間填充曲線的。 由于所得到天線結(jié)構(gòu)的多諧振屬性,這樣的結(jié)構(gòu)所能達(dá)到的帶寬取決于組成最終結(jié)構(gòu)的降尺度副本的數(shù)目。 另一方面,在所提出的設(shè)計(jì)中空間填充曲線的作用在于在其區(qū)域填充的高效,這使得在不增加天線整體尺寸的情況下能夠使用多個(gè)降尺度副本來提供不同的諧振縫隙的長度(即,路徑)。</p><p> 把二次迭代摩爾空間填充曲線作
27、為一個(gè)天線原始的拓?fù)浣Y(jié)構(gòu)可開發(fā)出具有87.6%(VSWR < 2)的帶寬。該天線具有一個(gè)3 * 3 cm2的總面積,用于在2.6-6.5千兆赫的頻率范圍內(nèi)進(jìn)行處理。且具有5分貝的最大增益。 最后,在該寬頻帶天線中引入不對(duì)稱結(jié)構(gòu)以實(shí)現(xiàn)圓極化性能。圓極化性能的實(shí)現(xiàn)需將所有平行結(jié)構(gòu)中位于一邊的垂直縫隙和所有的內(nèi)部縫隙替代成接地板,同時(shí)將微帶饋送線沿對(duì)角線方向準(zhǔn)確放置。所開發(fā)出的圓極化天線在所有的頻率范圍內(nèi)具有22%的3-dB軸
28、比帶寬(VSWR < 2)。</p><p> 二、論文中的天線設(shè)計(jì)</p><p><b> 1、寬帶縫隙天線</b></p><p> 論文中天線的拓?fù)浣Y(jié)構(gòu)是基于微帶饋電方形環(huán)縫隙的應(yīng)用。如圖1(a)所示,在第一個(gè)設(shè)計(jì)步驟中,用二次迭代“島型”摩爾空間填充曲線代替方形環(huán)縫隙天線??p隙總長度等于一個(gè)波長。此外,如圖1(b)所示,添
29、加另一個(gè)正交的二次迭代摩爾曲線到原來的曲線上。這種拓?fù)浣Y(jié)構(gòu)是對(duì)稱的并具有對(duì)應(yīng)于不同的頻率的諧振縫隙長度。因此,它具有比單個(gè)二次迭代摩爾縫隙天線更寬的帶寬。然而,從圖1(b)中可以看出,所得到的結(jié)構(gòu)中在其中心仍有一個(gè)區(qū)域未被使用。在第二個(gè)設(shè)計(jì)步驟中,為了增加天線的帶寬,將該結(jié)構(gòu)的兩個(gè)不同的降尺寸副本[如圖1(c)和(d)]插入到如圖1(e)所示的可用區(qū)域內(nèi)部,。最終所得天線的拓?fù)浣Y(jié)構(gòu)如圖1(e)所示,有不同的諧振縫隙長度(即,路徑)并可作
30、為具有寬帶性能的多諧振天線使用。最后使用一個(gè)微帶饋線結(jié)構(gòu)來同時(shí)激勵(lì)所有的諧振縫隙。</p><p> 用MMBFW(moment-method-based full-wave)電磁模擬器IE3D分析所設(shè)計(jì)的縫隙天線。仿真環(huán)境中考慮了電介質(zhì)和導(dǎo)體損耗,應(yīng)用了波去嵌入技術(shù)的延伸。這樣的設(shè)置考慮了端口上真實(shí)的入射和反射波,從而確保散射參數(shù)的精確測定。</p><p> 該天線在泰康利RF-3
31、5基板上制作(r = 3.5, h = 1.52mm),在約4.5 GHz工作。 50-微帶饋線印在基板背面上,具有3.4毫米的寬度。由于結(jié)構(gòu)的完全對(duì)稱,饋線需放置在任何一邊的中心,并且用一個(gè)匹配短截線來進(jìn)行阻抗匹配。通過延伸50-微帶饋線到該結(jié)構(gòu)的邊緣外來實(shí)現(xiàn)最佳匹配。</p><p> 如圖1(b),對(duì)稱縫隙天線拓?fù)涞耐鈧?cè)長度為30mm,內(nèi)側(cè)長度為20mm,縫隙寬度為2mm。如圖1(c),第一個(gè)降尺寸結(jié)構(gòu)
32、的外側(cè)長度為20mm,內(nèi)側(cè)長度為10mm,縫隙寬度為1.5mm。最后,如圖1(d),第二個(gè)降尺寸結(jié)構(gòu)邊長為10mm,縫隙寬度為1mm。 為了進(jìn)行比較,對(duì)具有相同面積的兩個(gè)基本相似的結(jié)構(gòu)進(jìn)行仿真。第一個(gè)是單片方環(huán)縫隙天線,外側(cè)長度為30 mm,縫隙寬度為2mm。第二個(gè)是嵌套方環(huán)縫隙天線,與所研究的天線具有相同的尺寸,如圖2所示。仿真得這三種結(jié)構(gòu)(即,所研究天線,單片方環(huán)和嵌套方環(huán))的回波損耗如圖3所示。測得所研究天線的回波損耗也
33、可見圖3。</p><p> 單片方環(huán)縫隙天線和嵌套方環(huán)縫隙天線都有復(fù)諧振特性。單片方環(huán)和嵌套方環(huán)縫隙天線的帶寬(VSWR <2)分別為6.5%和29%。該天線的寬帶性能良好,其帶寬為87.6%。因?yàn)樽罱K得到的天線是由不同的諧振縫隙長度保證了寬帶性能,所以這些結(jié)果完全是預(yù)期之內(nèi)的。同時(shí)也已經(jīng)證實(shí)回波損耗的仿真結(jié)果和測量結(jié)果相吻合。開發(fā)出的縫隙天線的照片如圖4。 仿真所得的沿縫隙的磁流分布如圖5所示
34、,分別在兩個(gè)對(duì)應(yīng)于最小回波損耗點(diǎn)的頻率上。所有的縫隙都盡量實(shí)現(xiàn)輻射對(duì)稱特性,這表明了空間填充曲線在較寬的頻率范圍內(nèi)能夠提供多諧振縫隙長度(即,路徑)是有效的。另一方面,上層縫隙在更高頻率上起到的作用是有限的。 該天線在兩個(gè)不同的頻率仿真所得的輻射圖形如圖6所示??傠妶鲆詢蓚€(gè)不同的方位角( = 0°and =90°)繪制。在4.5 GHz時(shí),計(jì)算出的最大天線增益為5 dB。 主束點(diǎn)在θ= 0°
35、和180°垂直對(duì)準(zhǔn),比如側(cè)面類似于磁偶極子。然而,在高頻率時(shí),輻射圖在天線平面附近(θ= 90°和-90°)有一些不連續(xù)的地方,如圖6(b)。這主要是由于所使用的厚電介質(zhì)基板在高階模式容易被激發(fā),從而產(chǎn)生圖形,和</p><p> 2、圓極化縫隙天線 基于以上的寬帶設(shè)計(jì),在縫隙結(jié)構(gòu)中引入不對(duì)稱性來研究圓極化天線,如圖[9]所示。不對(duì)稱性的實(shí)現(xiàn)需將所有平行結(jié)構(gòu)中位于一邊的垂
36、直縫隙和所有的內(nèi)部縫隙替代成接地板,同時(shí)將微帶饋送線沿對(duì)角線方向準(zhǔn)確放置。該圓極化天線的結(jié)構(gòu)如圖7所示。 該圓極化縫隙天線在泰康利的RF-35基板(r = 3.5, h = 1.52mm)上以相同的寬帶結(jié)構(gòu)尺寸開發(fā)。圓極化縫隙天線仿真和測量的回波損耗分別如圖8所示。該天線的帶寬(VSWR <2)為66%,是所使用的寬帶拓?fù)涞念A(yù)期值。,可以清楚地觀察到仿真結(jié)果與實(shí)測結(jié)果吻合得很好。 仿真的軸向比如圖9所示。該天線的3
37、-dB的軸比帶寬為22%(VSWR < 2)。</p><p> 三、總結(jié) 基于改進(jìn)的空間填充曲線已經(jīng)研制出寬帶和圓極化縫隙天線。通過將不同的降尺度的“島型”的副本插入到彼此組成可提供寬頻帶性能的多諧振縫隙長度。此外,在提出的寬頻帶結(jié)構(gòu)上引入不對(duì)稱達(dá)到圓極化。 使用三種縮減后的改進(jìn)的二次迭代摩爾空間填充縫隙天線,一種具有87.6%的阻抗帶寬(VSWR < 2)的寬帶天線已經(jīng)研制成功。
38、該天線總面積為3 * 3 cm2,增益為5 dB。在相同的區(qū)域,該圓極化類型的3-dB軸比帶寬為22%且VSWR < 2。 所能達(dá)到的寬帶性能取決于所使用的空間填充曲線能提供的區(qū)域填充效率。因此,為進(jìn)一步提高寬帶,必須研究其它的基于空間填充的拓?fù)浣Y(jié)構(gòu)進(jìn)。另一方面,為了實(shí)現(xiàn)不同的設(shè)計(jì)目標(biāo),合并不同類型空間填充曲線來提供最大區(qū)域填充效率的可能性也是值得研究的。</p><p><b> 附件
39、3:外文原文一</b></p><p> A Planar Antenna in LTCC for Single-Package Ultrawide-Band Radio</p><p> Chen Ying and Y.P.Zhang</p><p> Abstract—This correspondence presents a planar
40、antenna in low-temperature cofired ceramic technology for a single-package solution of ultrawide-band(UWB)radio. The antenna has an elliptical radiator fed through a microstrip line.The radiator and the microstrip line s
41、hare the same ground plane with the other UWB radio circuitry. The experiments have been conducted.Results show that the prototype antenna has achieved bandwidth of 110.9%, gain from 1 34 to 5.43 dBi, broad patterns, and
42、 relatively c</p><p> Index Terms—Low-temperature cofired ceramic(LTCC),planar an-</p><p> tenna,ultrawide-band(UWB).</p><p> I.INTRODUCTION</p><p> There is much i
43、nterest today in developing ultrawide-band(UWB) radio for short-range high-speed wireless communication networks. UWB radio exploits an ultrawide bandwidth of 7.5 GHz to exchange information. With such a wide bandwidth,
44、there exist some challenges in making UWB radio up to its full potential. One of the major challenges is the design of UWB antennas particularly for use in portable system. Good UWB antennas should have low return loss,
45、omni directional radiation pattern, and high </p><p> Fig. 1. Configuration of the LTCC planar UWB antenna (unit in millimeters):</p><p> (a) top layer and (b) bottom layer.</p><p&g
46、t; II.DESCRIPTION OF LTCC PLANAR UWB ANTENNA</p><p> There are numerous LTCC tapes that can be used for single-package UWB radio. We chose Dupont 951 LTCC tape for our work. Dupont 951 LTCC tape has a rela
47、tive permittivity of 7.8 and loss tangent of 0.001 ~ 0.002 over the UWB band.Fig.1(a)shows the top layer configuration of the LTCC planar UWB antenna. As shown, the antenna has a shape of ellipse with a short axis of 11
48、mm and a long axis of 17mm. It is fed by a microstrip line with a length of 41 mm and a width of 3 mm. The single LTCC package h</p><p> shown, the antenna ground plane is connected with the other UWB radio
49、 circuitry ground plane. The antenna ground plane has a footprint of 33 * 25 mm2. The other UWB radio circuitry ground plane has a rectangular shape of dimensions 50 * 41 mm2.</p><p> Fig. 2. Measured retur
50、n loss versus frequency:</p><p> (a) with the antenna ground plane and (b) without the antenna ground plane.</p><p> III.RESULTS AND DISCUSSIONS</p><p> In this section,the measu
51、red performance of the LTCC planar UWB</p><p> antenna is examined.All the measurements were carried out using an</p><p> HP 8722ES network analyzer in an anechoic chamber over the fre-</p&
52、gt;<p> quency range of 2 to 12 GHz.</p><p> A.Return Loss and Radiation Characteristics</p><p> As shown in Fig.2(a), the measured return loss magnitudes fall below the threshold of –
53、10 dB from 3 to 10.6 GHz indicating that the antenna has achieved bandwidth 7.6 GHz(7.6/6.85 = 110.9%).</p><p> Figs. 3–5 show the measured far-field radiation patterns at 3.5, 6.85, and 10.1 GHz for the tw
54、o principal cuts (phi = 0°and phi = 90°). For all the three frequencies, the radiation patterns at phi = 0 °cut have the strongest radiation at 0° and 180°and the weakest radiation at 90°and
55、 270°. For all the three frequencies, the radiation patterns at phi = 90° cut have nulls at 0°, 90°, 180°, and 270°. This indicates that the LTCC planar UWB antenna has very similar radiatio
56、n patterns over the ultraw</p><p> the azimuthal plane.</p><p> Fig.6 shows the measured antenna gain values at phi=theta=0°direction. The measured gain is–1.34 dBi at 3.1 GHz, 4.2 dBi at
57、 6.85 GHz, and 1.76 dBi at 10.6 GHz.</p><p> Fig.7 shows the measured group delay versus frequency. As shown, the group delay difference is within 3.5 ns throughout the whole band from 2 to 12 GHz. The smal
58、l group delay differences ensure the good performance of the antenna against waveform distortion during the transmission.</p><p> Fig. 3. Measured radiation patterns at 3.5 GHz: (a) phi = 0 and (b) phi =<
59、;/p><p><b> 90 .</b></p><p> Fig. 4. Measured radiation patterns at 6.85 GHz: (a) phi = 0 and (b)</p><p> phi = 90 .</p><p> B.Effect of the Antenna Ground
60、 Plane</p><p> Planar monopole antenna has been proved to yield wide-impedance bandwidth[12]. The removal of the antenna ground plane modifies the planar slot antenna into a planar monopole antenna. The eff
61、ect of the removal of the antenna ground plane is worth of investigating.</p><p> The measured return loss plotted versus frequency from 3.1 to 10.6 GHz is shown in Fig.2(b). It also indicates very wide imp
62、edance bandwidth over the UWB band. The return loss can be further improved by adjusting the dimension of the radiating element. The measured radiation patterns at 3.5, 6.85, and 10.1 GHz without the antenna ground plane
63、 are also plotted in Figs.3–5 for both the phi=0°and phi=90°cuts. The shapes of radiation patterns for both cases with and without the antenna ground plane </p><p> IV.CONCLUSION</p><p&
64、gt; The LTCC planar UWB antenna that shares the same ground plane with the other radio circuitry has been studied for the single-package solution of UWB radio. It has been demonstrated that the antenna has achieved an u
65、ltrawide bandwidth of 7.6 GHz from 3 to 10.6 GHz. It has been also demonstrated that the antenna has relatively omnidirectional radiations over the ultrawide bandwidth in the azimuthal plane. It was</p><p>
66、 found that the normalized radiated power spectrum density of the LTCC planar UWB antenna was within the FCCs regulation on emission limit of indoor UWB systems except from 2.6 to 3 GHz[13]. The measured antenna gain was
67、–1.34 dBi at 3.1 GHz,4.2 dBi at 6.85 GHz,and 1.76 dBi at 10.6 GHz. The measured group delay fluctuated within 3.5 ns from 2 to 12 GHz. Further investigations and developments are being carried out in our laboratory on th
68、e effect between the LTCC planar UWB antenna and the other UW</p><p> REFERENCES</p><p> [1]H.G.Schantz and M.Barnes,“The COTA UWB magnetic slot antenna,” in Proc.IEEE AP-S Int.Symp.,vol.4,Jul
69、.2001,pp.104–107.</p><p> [2]H.G.Schantz and L.Fullerton,“The diamond dipole:A Gaussian impulse antenna,”in Proc.IEEE AP-S Int.Symp.,vol.4,Jul.2001,pp.100–103.</p><p> [3]Y.H.Suh and I.Park,“A
70、 broadband eccentric annular slot antenna,”in Proc.IEEE AP-S Int.Symp.,vol.4,Jul.2001,pp.94–97.</p><p> [4]J.McCorkle,“Electrically Small Planar UWB Antenna Apparatus and Related System,”U.S.Patent 6 590 54
71、5,Jul.8,2003.</p><p> [5][Online].Available:Http://www.ty-top.com/news/pdf/2003_03_10e.pdf</p><p> [6][Online].Available:Http://photonics.ga.com/uwb/images/pdf/trda_ taiyo.pdf</p><p
72、> [7][Online].Available:Http://www.wsdmag.com/Articles/ArticleID/6523/6523.html</p><p> [8]L.Devlin,G.Pearson,and J.Pittok,“RF and microwave component development in LTCC,”Bob Hunt,C-MAC Micro Technolog
73、ies.</p><p> [9][Online].Available:Http://www.mwrf.com/Articles/Index.cfm?ArticleID=5894</p><p> [10]Y.P.Zhang,“Integration of microstrip patch antenna on ceramic ball grid array package,”Elec
74、tron.Lett.,vol.38,no.5,pp.207–208,2002.</p><p> [11][Online].Available:Http://www.sonnetusa.com/products/em/ef_how_em_works.asp#ref2</p><p> [12]P.A.Agrawall,G.Kumar,and K.Ray,“Wide-band plana
75、r monopole antenna,”IEEE Trans.Antennas Propag.,vol.46,no.2,pp.294–295,Feb.1998.</p><p> [13]“Notice of Inquiry(NOI)Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission System
76、s 98–208,”Federal Communications Commission,ET Docket 98–153,1998.</p><p><b> 附件4:外文原文二</b></p><p> Broad-Band and Circularly Polarized Space-Filling-Based Slot Antennas</p>
77、<p> Hani A.Ghali,Member,IEEE,and Tarek A.Moselhy</p><p> Abstract—Based on the use of space-filling curves,broad-band and circularly polarized microstrip-fed slot antennas are proposed. Broad-band p
78、erformance is achieved through merging different downscaled versions of a composition of“island-like”space-filling slot antennas without increasing the overall antenna size. This technique provides different resonant slo
79、t lengths corresponding to a wide range of frequencies. By merging three downscaled versions of a composite second-iteration Moore slot ant</p><p> Index Terms—Broad-band antenna,circularly polarized antenn
80、a,fractal antenna,slot antenna,space-filling curves.</p><p> I.INTRODUCTION</p><p> Broad-band antenna designs represent challenging issues for high-frequency high-speed data-rate wireless com
81、munication systems. Printed antennas offer ease of integration with monolithic microwave integrated circuits,low cost, and low-profile efficient solutions. Among different printed antenna topologies, the slot antenna is
82、considered the most appropriate candidate for wide-band applications; impedance bandwidths in the range of 30%–63%have been reported [1]–[6].</p><p> However, although microstrip-fed slot antenna structures
83、 are not considered as wide-band topologies, currently they receive much more research attention due to their potential for both wide-band operation and circular polarization. Recently, a wide-band microstrip-fed bi-semi
84、circular slot antenna that has a bandwidth of 45.8% is reported in[7]. This structure has a bandwidth that is greater than that of an ordinary annular ring slot antenna by a factor of 7.3. Another structure, which is ba
85、sed </p><p> On the other hand, a circularly polarized microstrip-fed square ring slot antenna is presented in[9]. The design is based on introducing asymmetry in the square ring slot structure in the form
86、 of a meandered slot section, together with the placement of the feed line at 45 from the introduced asymmetry. The antenna has a 3-dB axial ratio bandwidth of approximately 4.3%. </p><p> Recently, “open-s
87、tructure”space-filling curves have been proposed for the development of coplanar waveguide (CPW)-fed fractal slot antennas[10], where miniaturization is the main objective. For this purpose, the conventional slot is repl
88、aced by a space-filling curve having the same electrical properties, but confined in a reduced area. The second-iteration Sierpinski slot antenna, operating around 2.4 GHz, presents a compact design confined in 1.8 *1.8
89、cm2 (0.144?o * 0.144?o) with a bandwidth</p><p> hand, the first-iteration Minkowski fractal slot antenna has</p><p> a bandwidth of 35%, a gain of 5.4 dB, and is confined in</p><
90、;p> 5 * 5 cm2.</p><p> In this paper, “island-like”space-filling curves are used for the development of broad-band and circularly polarized slot antennas. Unlike the usual implementation of space-fillin
91、g curves for miniaturization of passive microwave devices and antennas[11]–[13], the proposed broad-band antenna design is based on the composition of“island-like”space-filling curves to provide different resonant slot l
92、engths over a wide range of frequencies within the same original area.</p><p> The developed antenna topology is generated through merging downscaled copies of a modified space-filling slot antenna. This mo
93、dified slot antenna is composed of two orthogonal copies of a single“island-like”space-filling structure. However,although the modified slot antenna and final antenna are not space-filling structures,they are based on sp
94、ace-filling curves. </p><p> The achieved bandwidth of such configuration depends on the number of scaled copies that are used to compose the final structure. This is mainly due to the multiresonant behavio
95、r of the resultant antenna structure. </p><p> On the other hand,the usefulness of space-filling curves in the proposed design lies in its area-filling efficiency, which enables the use of multiple downscal
96、ed copies to provide different resonant slot lengths (i.e.,paths) without increasing the overall antenna size.</p><p> Starting with a second-iteration Moore space-filling curve as an original antenna topol
97、ogy, a broad-band slot antenna having a bandwidth of 87.6% is developed. The antenna has a total area of 3 * 3 cm2 for operation in the frequency range of 2.6–6.5 GHz. The proposed slot antenna has a maximum gain of 5 dB
98、.</p><p> Finally,to provide the circular polarization performance,an asymmetry in the proposed broad-band antenna is introduced. This is achieved by replacing all vertical slots on one side of the symmetri
99、cal structure and all inner slots by a ground plane, together with the proper placement of the microstrip-feed line along the diagonal direction. The developed circularly polarized antenna has a 3-dB axial ratio bandwidt
100、h of 22% with all over the frequency range.</p><p> Fig. 1. Proposed space-filling-based slot antenna. (a) Second-iteration Moore structure. (b) Symmetrical structure. (c) First downscaled version. (d) Seco
101、nd downscaled version. (e) Final antenna configuration.</p><p> II.PROPOSED ANTENNA DESIGN</p><p> A.Broad-Band Slot Antenna</p><p> The proposed antenna topology is based on the
102、 use of a microstrip-fed square ring slot. In the first design step, the second-iteration“island-like”Moore space-filling curve is used to replace the square ring slot antenna, as shown in Fig.1(a). The total slot length
103、 is equal to one wavelength. In addition, another orthogonal second-iteration Moore curve is added to the original one, as shown in Fig.1(b). This topology is symmetric and has different resonant slot lengths correspondi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 通信工程外文翻譯
- 通信工程畢業(yè)設(shè)計(jì)外文翻譯
- 通信工程畢業(yè)論文外文翻譯
- 通信工程外文翻譯--移動(dòng)通信3g技術(shù)分析
- 通信工程竣工資料
- 通信工程竣工資料
- 通信工程外文翻譯---蜂窩無線通信系統(tǒng)的仿真
- 通信工程類外文翻譯@中英文翻譯@外文文獻(xiàn)翻譯
- 通信工程竣工資料樣本
- 通信工程專業(yè)畢業(yè)論文外文資料翻譯-- 正交頻分復(fù)用技術(shù)簡介
- 通信工程畢業(yè)設(shè)計(jì)外文翻譯--通用移動(dòng)通信系統(tǒng)的回顧
- 通信工程外文翻譯--三網(wǎng)融合的物理網(wǎng)絡(luò)選擇
- 通信工程
- 通信工程 外文翻譯---組織化學(xué)中的物理微波技術(shù)
- 通信工程外文翻譯--wlan-wimax混合垂直切換滿意機(jī)制
- 通信工程計(jì)劃師基礎(chǔ)入門知識(shí)資料題庫.資料大全
- 通信工程外文翻譯---一點(diǎn)多址擴(kuò)頻通信系統(tǒng)的應(yīng)用
- 通信工程外文翻譯--wlan-wimax混合垂直切換滿意機(jī)制
- 通信工程竣工資料文件(通用版)
- 通信工程專業(yè)
評(píng)論
0/150
提交評(píng)論