基于神經(jīng)網(wǎng)絡(luò)的感應(yīng)電機(jī)定子電阻參數(shù)辨識(shí).pdf_第1頁(yè)
已閱讀1頁(yè),還剩65頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、Y1404875分類(lèi)號(hào):TPl83UDC:——密級(jí):學(xué)校代號(hào):10150學(xué)號(hào):20052160峽建交積摯碩士學(xué)位論文基于神經(jīng)網(wǎng)絡(luò)的感應(yīng)電機(jī)定子電阻參數(shù)辨識(shí)IdentifieationofInductionmotorStatorResistanceBasedonNeutralNetwork學(xué)生姓名:導(dǎo)師及職稱(chēng):學(xué)科門(mén)類(lèi):專(zhuān)業(yè)名稱(chēng):研究方向:申請(qǐng)學(xué)位級(jí)別:論文答辯日期:學(xué)位授予單位:李曉芳張繼和教授工學(xué)控制理淪與控制上程智能控制碩士2007

2、qi12月20日大連交通大學(xué)人_迕交通人學(xué)l:’Z碩‘1?!酆握撐腁bstractGreatdevelopmentshavetakenplacesinceDirectTorqueControlsystem(DTC)wasbroughtforward1thasbeenafocusamongdomesticandforeignscholarsbecauseithascharacterwitllsimplestructurenoveltyth

3、oughtandwonderfulpropertyDTCsystemisdifferentfromvectorcontrolinthatitiSlocatedinstatorcoordinateAsaresultfewparametershaveeffectonDTCsystemsandithaslittlercalculationThispapermainlyhasobtainedagreatdealofdataaboutthesta

4、torresistancewhichchangeswithdifferentvoltagefrequencies,thestatorcurrents,thestatorendtemperatethroughtheexperiment,andobtainsstatorresistanceandvoltagefrequency,statorcurrentaswellasthestatorendwarmbetweenchangerelatio

5、nsfromthedatathenusestheneuralnetworkalgorithmtoconstructthemodelofstatorresistancechangingwithvarietyvoltagefrequencies,statorcurrentsandthetemperatureandhascardedonthesimulationusingtheMATLABsimulationt001Thestatorresi

6、stanceisaffectedbymanyfactors,suchasthedriver’Sruntime,currentmagnitude,frequency,andtemperatureoftheenvironmentetcItisextremelydifficulttofindtherelationshipthroughthetraditionmethodsbecauseofcomplicatedvarietyofresista

7、nceThereforethemainpointofthispaperistoapplygeneralizedregressionneuralnetworktothedetectionofstatorresistance;tocombinemanyfactorsintothreeparameters:frequency,electriccurrentandtemperatureUsingthegeneralizedregressionn

8、euralnetwork,thispaperstruoturesthemodelinordertoconfirmstatorresistanceInfullspeedarea,thispapercarriesontheidentificationtothestatorresistanceBecauseofinthelowfrequencyareathestatorresistanceparameterchangeinfluencesth

9、efluxlinkagecharacteristicThekeypointwhichimproveslowfrequencycharacteristicofthenon—velocitygeneratordirecttorquecontrolsystemishowtOenhancetheprecisionofthestatorresistanceobservationInordertOenhancetheneuralnetworkthe

10、trainingspeed,andreducethemutualinfluenceofthenetworkweightbetweenmiddle&highfrequencyandlowfrequencysampleintrainingprocess,thispaperseparatelyestablishesrespectiveneuralnetworktOmiddle&high—frequencyandlowfrequencystat

11、orresistancemodelComparingwiththeidentificationresultofthestatorresistancebytheBPneuralnetwork,thegeneralizedregressionneuralnetworkwhichthispaperdesignshasfollowmerits:1TheabilityofapproachisverystrongTheconcealmentleve

12、lnodefunction(primaryfunction)ofthegeneralizedregressionneuralnetworkusestheGaussfunctionAsanonnegativenonlinearfunction,ittakesonekindofpartialdistributionwhichweakensthecenterradialsymmetry,theGaussfunctionwillhavether

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論