版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、自V. Vapnik提出的支持向量機(jī)理論以來,因其堅實的理論基礎(chǔ)和諸多良好特性,在近年獲得了廣泛的關(guān)注。最小二乘支持向量機(jī)是支持向量機(jī)的一種改進(jìn),它將傳統(tǒng)支持向量機(jī)的不等式約束改為等式約束,且將誤差平方和損失函數(shù)作為訓(xùn)練集的經(jīng)驗損失,這樣就把解二次規(guī)劃問題轉(zhuǎn)化為求解線性方程組問題,提高求解問題的速度和收斂精度。決定最小二乘支持向量機(jī)性能的因素是懲罰因子C和核函數(shù)的選取,本文采用比較常用的核函數(shù)徑向基核函數(shù)(RBF),所以懲罰因子C和核參
2、數(shù)g 是決定最小二乘支持向量機(jī)的性能的主要因素。因此,最優(yōu)的參數(shù)組合(C,g),能使最小二乘支持向量機(jī)具有較好的推廣能力。遺傳算法(Genetic Algorithm)是模擬達(dá)爾文的遺傳選擇和自然淘汰的生物進(jìn)化過程的計算模型,而改進(jìn)的遺傳算法是在模擬退火算法的運行過程中溶入遺傳算法,稱為模擬退火遺傳算法,模擬退火遺傳算法是基于Monte Carlo 迭代求解法一種啟發(fā)式隨機(jī)搜索算法,它模擬固體物質(zhì)退火過程的熱平衡問題與隨機(jī)搜索尋優(yōu)問題的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于改進(jìn)遺傳算法的切削參數(shù)優(yōu)化.pdf
- 基于改進(jìn)遺傳算法的控制參數(shù)研究.pdf
- 基于改進(jìn)遺傳算法尋優(yōu)的SVM風(fēng)能短期預(yù)測.pdf
- 基于LS_SVM的旋轉(zhuǎn)盤控制系統(tǒng)設(shè)計.pdf
- 基于LS_SVM建立發(fā)酵過程動態(tài)模型的研究及軟件實現(xiàn).pdf
- 基于改進(jìn)遺傳算法的小康礦圍巖參數(shù)反演分析.pdf
- pid參數(shù)自整定的改進(jìn)遺傳算法
- 基于改進(jìn)遺傳算法的MR阻尼器模型參數(shù)識別.pdf
- 基于改進(jìn)遺傳算法的網(wǎng)格任務(wù)調(diào)度算法
- 基于改進(jìn)遺傳算法的無功優(yōu)化.pdf
- 基于改進(jìn)遺傳算法的圖像分割.pdf
- 基于改進(jìn)遺傳算法的應(yīng)用研究.pdf
- 基于改進(jìn)遺傳算法的船舶管路設(shè)計.pdf
- 基于改進(jìn)遺傳算法的航跡規(guī)劃研究.pdf
- 基于改進(jìn)遺傳算法的VRP問題研究.pdf
- 基于PCA與LS_SVM的瓦斯傳感器故障診斷方法研究.pdf
- 基于改進(jìn)遺傳算法的懸架結(jié)構(gòu)優(yōu)化.pdf
- 基于改進(jìn)遺傳算法的網(wǎng)格任務(wù)調(diào)度算法.pdf
- 基于GMM與改進(jìn)LS-SVM算法的說話人識別研究.pdf
- 遺傳算法及其改進(jìn).pdf
評論
0/150
提交評論