支持向量機(jī)解的性質(zhì)及SOR型算法研究.pdf_第1頁
已閱讀1頁,還剩107頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、支持向量機(jī)(Support Vector Machine, SVM)是在統(tǒng)計(jì)學(xué)習(xí)理論基礎(chǔ)之上發(fā)展起來的一種全新的機(jī)器學(xué)習(xí)算法,是一種解決分類問題的有效方法。它將分類問題轉(zhuǎn)化為最優(yōu)化問題,從而應(yīng)用最優(yōu)化理論解決問題。
  本文首先詳細(xì)地論述了SVM的基本思想和發(fā)展現(xiàn)狀,然后通過深入分析,指出現(xiàn)有一些方法中存在的問題。針對(duì)這些問題,應(yīng)用最優(yōu)化理論進(jìn)行深入研究,主要工作如下:
  1.通過引進(jìn)對(duì)偶范數(shù)和平面上基于任意范數(shù)的投影,由

2、向量范數(shù)等價(jià)性得到對(duì)偶范數(shù)的等價(jià)性,在分析對(duì)偶范數(shù)與間隔的聯(lián)系后,進(jìn)而得到基于各向量范數(shù)的間隔間的等價(jià)性,將問題歸一化。
  2.對(duì)基于超松弛方法的支持向量機(jī)(SOR-SVM)的模型進(jìn)行適當(dāng)?shù)母脑?,得到改進(jìn)的SOR-SVM算法。改進(jìn)的SOR-SVM模型中去掉了松弛變量非負(fù)的約束條件,從而其對(duì)偶問題是一個(gè)只含非負(fù)約束的二次凸規(guī)劃問題。由最優(yōu)性充要條件和SOR方法,得到一個(gè)比現(xiàn)有算法更為簡單的改進(jìn)SOR-SVM算法。一方面,從解的性質(zhì)

3、角度入手,嚴(yán)格證明了改進(jìn)的SOR-SVM與原標(biāo)準(zhǔn)模型的同解性,并將該結(jié)論推廣到另一類改進(jìn)模型與原標(biāo)準(zhǔn)模型的解的關(guān)系中,為SVM提供了理論依據(jù)。另一方面,我們對(duì)算法的性能進(jìn)行了分析和評(píng)測(cè)。證明了該算法是線性收斂的,數(shù)值實(shí)驗(yàn)表明算法是非常有效的、且適合推廣到非線性問題上,較原算法有更快的收斂速度。
  3.將改進(jìn)的SOR-SVM思想推廣到回歸機(jī)中,對(duì)基于超松弛方法的支持向量回歸機(jī)(SOR-SVR)的模型進(jìn)行適當(dāng)?shù)母脑斓玫礁倪M(jìn)的SOR-

4、SVR。首次從理論上嚴(yán)格證明了改進(jìn)的SOR-SVR與原標(biāo)準(zhǔn)模型的同解性,并將該結(jié)論推廣到另一類改進(jìn)模型與原標(biāo)準(zhǔn)模型的解的關(guān)系中。理論保證了算法是線性收斂的,數(shù)值實(shí)驗(yàn)表明算法有良好的魯棒性。
  4.基于改進(jìn)的SOR-SVM和廣義的支持向量機(jī)(GSVM)思想,提出了基于SOR的改進(jìn)的非線性廣義支持向量機(jī),使得可以用基于任意核的改進(jìn)SOR-SVM來進(jìn)行分類處理。
  5.將基于SOR的改進(jìn)的非線性廣義支持向量機(jī)的思想推廣到回歸機(jī)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論