基于聚類樹的相似重復(fù)記錄檢測算法改進(jìn)研究.pdf_第1頁
已閱讀1頁,還剩46頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、數(shù)據(jù)倉庫中數(shù)據(jù)來源的多渠道導(dǎo)致相似重復(fù)記錄增多,嚴(yán)重影響了數(shù)據(jù)利用的效率和決策質(zhì)量。相似重復(fù)記錄的檢測和消除成為數(shù)據(jù)倉庫、知識發(fā)現(xiàn)等領(lǐng)域的熱點(diǎn)研究問題。由于大多數(shù)的決策應(yīng)用都是基于動態(tài)數(shù)據(jù)庫,因此增量式相似重復(fù)記錄檢測研究更是受到組織和學(xué)者的關(guān)注。基于聚類樹的檢測算法是一種比較好的增量式相似重復(fù)記錄檢測方法。但該算法存在效率不高、精度低下的問題。鑒于此,本文使用等級法進(jìn)行屬性約減,并為聚類樹構(gòu)建過程增設(shè)了一個閾值,提出了一種改進(jìn)的基于聚

2、類樹檢測算法。
   本文首先綜述了數(shù)據(jù)質(zhì)量、數(shù)據(jù)清洗和相似重復(fù)記錄檢測的相關(guān)理論和方法。其次,分析了基于聚類樹檢測算法存在的問題,針對這些問題提出了改進(jìn)思路和方法,即采用等級權(quán)重法約減屬性給屬性排序以提高算法的精度,通過增設(shè)記錄閾值提高算法的效率,并給出了改進(jìn)后的算法過程。最后,以SQL SeverManagement Studio為DBMS、MyEclipse7.0為程序開發(fā)工具,開發(fā)了ICT-Syst(Improved C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論